NumPy 配列の行ごとに特定の列インデックスを効率的に選択する
NumPy 行列を使用する場合、特定の列インデックスを抽出する必要があるシナリオが発生する場合があります。インデックスのリストに基づいた行ごとの列数。従来の反復手法を使用すると、大規模なデータセットの場合は非効率になる可能性があります。これに対処するには、パフォーマンスを最適化するための代替ソリューションを検討します。
1 つのアプローチには、ブール配列を使用した直接選択が含まれます。元の行列 a と同じ形状のブール行列 b を考えてみましょう。 b の各列は、a からその列を選択するかどうかを示す条件を表します。ブール型インデックスを利用すると、a[b] から直接目的の列値を取得できます。
たとえば、行列 a とブール配列 b が与えられた場合、
<code class="python">a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) b = np.array([[False, True, False], [True, False, False], [False, False, True]])</code>
次のように実行できます。直接選択:
<code class="python">result = a[b]</code>
この操作の結果は次の出力になります:
<code class="python">[2, 4, 9]</code>
あるいは、np.arange を利用してインデックス配列を作成し、それに対して直接選択を実行することもできます。ブール配列生成のロジックによっては、この方法でパフォーマンス上の利点が得られる場合があります。
<code class="python">result = a[np.arange(len(a)), [1, 0, 2]]</code>
このアプローチでは、ブール配列ソリューションと同じ出力が生成されます。
これらの最適化された選択手法を活用することにより、を使用すると、大規模な NumPy 配列から行ごとに特定の列インデックスを抽出する効率を大幅に向上させることができます。
以上がNumPy 配列の行ごとに特定の列インデックスを効率的に選択する方法は?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

forhandlinglaredataSetsinpython、usenumpyArrays forbetterperformance.1)numpyarraysarememory-effictientandfasterfornumericaloperations.2)nusinnnnedarytypeconversions.3)レバレッジベクトル化は、測定済みのマネージメーシェイメージーウェイズデイタイです

inpython、listsusedynamicmemoryallocation with allocation、whilenumpyArraysalocatefixedmemory.1)listsallocatemorememorythanneededededinitivative.2)numpyArrayasallocateexactmemoryforements、rededicablebutlessflexibilityを提供します。

inpython、youcanspecthedatatypeyfelemeremodelernspant.1)usenpynernrump.1)usenpynerp.dloatp.ploatm64、フォーマーpreciscontrolatatypes。

numpyisessentialfornumericalcomputinginpythonduetoitsspeed、memory efficiency、andcomprehensivematicalfunctions.1)それは、performsoperations.2)numpyArraysaremoremory-efficientthanpythonlists.3)Itofderangeofmathematicaloperty

contiguousMemoryAllocationisucial forArraysは、ForeffienceAndfastelementAccess.1)iteenablesConstantTimeAccess、O(1)、DuetodirectAddresscalculation.2)itemprovesefficiencyByAllowingMultiblementFechesperCacheLine.3)itimplifieMememm

slicingapythonlistisdoneusingtheyntaxlist [start:stop:step] .hore'showitworks:1)startisthe indexofthefirstelementtoinclude.2)spotisthe indexofthefirmenttoeexclude.3)staptistheincrementbetbetinelements

numpyallows forvariousoperationsonarrays:1)basicarithmeticlikeaddition、減算、乗算、および分割; 2)AdvancedperationssuchasmatrixMultiplication;

Arraysinpython、特にnumpyandpandas、aresentialfordataanalysis、offeringspeedandeficiency.1)numpyarraysenable numpyarraysenable handling forlaredatasents andcomplexoperationslikemoverages.2)Pandasextendsnumpy'scapabivitieswithdataframesfortruc


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

Dreamweaver Mac版
ビジュアル Web 開発ツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

ホットトピック









