Python でマルチプロセッシング対応ロギングを実装する方法
Python のマルチプロセッシングを使用すると、独立して実行される複数のプロセスを作成できます。ただし、ログ ファイルなどの共有リソースへのアクセスは、複数のプロセスが同時に書き込みを試行する可能性があるため、複雑になる可能性があります。
この問題を回避するために、Python マルチプロセッシング モジュールは、モジュール レベルのマルチプロセッシング対応ログ機能を提供します。これにより、ロガーは一度に 1 つのプロセスのみが特定のファイル記述子に書き込まれるようにすることで、ログ メッセージの文字化けを防ぐことができます。
ただし、フレームワーク内の既存のモジュールはマルチプロセスを認識していない可能性があるため、代替ソリューションについては。 1 つのアプローチには、パイプ経由で親プロセスにログ メッセージを送信するカスタム ログ ハンドラーを作成することが含まれます。
このアプローチの実装を以下に示します。
from logging.handlers import RotatingFileHandler import multiprocessing, threading, logging, sys, traceback class MultiProcessingLog(logging.Handler): def __init__(self, name, mode, maxsize, rotate): logging.Handler.__init__(self) # Set up the file handler for the parent process self._handler = RotatingFileHandler(name, mode, maxsize, rotate) # Create a queue to receive log messages from child processes self.queue = multiprocessing.Queue(-1) # Start a thread in the parent process to receive and log messages t = threading.Thread(target=self.receive) t.daemon = True t.start() def receive(self): while True: try: # Get a log record from the queue record = self.queue.get() # Log the record using the parent process's file handler self._handler.emit(record) # Exit the thread if an exception is raised except (KeyboardInterrupt, SystemExit): raise except EOFError: break except: traceback.print_exc(file=sys.stderr) def send(self, s): # Put the log record into the queue for the receiving thread self.queue.put_nowait(s) def _format_record(self, record): # Stringify any objects in the record to ensure that they can be sent over the pipe if record.args: record.msg = record.msg % record.args record.args = None if record.exc_info: dummy = self.format(record) record.exc_info = None return record def emit(self, record): try: # Format and send the log record through the pipe s = self._format_record(record) self.send(s) except (KeyboardInterrupt, SystemExit): raise except: self.handleError(record) def close(self): # Close the file handler and the handler itself self._handler.close() logging.Handler.close(self)
このカスタム ログ ハンドラーでは、モジュールを使用できます。フレームワーク内で、マルチプロセッシング自体を意識する必要なく、標準のロギング手法を使用できます。ログ メッセージはパイプ経由で子プロセスから親プロセスに送信されるため、メッセージが文字化けせず、ログ ファイルに正しく書き込まれます。
以上がPython でマルチプロセッシング対応ログを実装する方法: キューベースのソリューション?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

この記事では、コマンドラインインターフェイス(CLI)の構築に関するPython開発者をガイドします。 Typer、Click、Argparseなどのライブラリを使用して、入力/出力の処理を強調し、CLIの使いやすさを改善するためのユーザーフレンドリーな設計パターンを促進することを詳述しています。

PythonのPandasライブラリを使用する場合、異なる構造を持つ2つのデータフレーム間で列全体をコピーする方法は一般的な問題です。 2つのデータがあるとします...

この記事では、numpy、pandas、matplotlib、scikit-learn、tensorflow、django、flask、and requestsなどの人気のあるPythonライブラリについて説明し、科学的コンピューティング、データ分析、視覚化、機械学習、Web開発、Hの使用について説明します。

この記事では、Pythonにおける仮想環境の役割について説明し、プロジェクトの依存関係の管理と競合の回避に焦点を当てています。プロジェクト管理の改善と依存関係の問題を減らすための作成、アクティベーション、およびメリットを詳しく説明しています。

正規表現は、プログラミングにおけるパターンマッチングとテキスト操作のための強力なツールであり、さまざまなアプリケーションにわたるテキスト処理の効率を高めます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

メモ帳++7.3.1
使いやすく無料のコードエディター

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

ホットトピック



