Apache Spark による効率的な文字列マッチング: 総合ガイド
概要:
光学式文字認識 (OCR) ツールの使用により、OCR エラーを処理するための効率的な文字列一致アルゴリズムの必要性が浮き彫りになりました。人気のあるデータ処理フレームワークである Spark は、このタスクに対するさまざまなソリューションを提供しています。
問題:
スクリーンショットで OCR を実行すると、文字置換 (" I" と "l" から "|")、絵文字の置換、およびスペースの削除が発生する可能性があります。これらの抽出されたテキストを大規模なデータセットと照合することは、これらの不正確さのため課題となります。
解決策:
Spark は、組み合わせて実行できる機械学習トランスフォーマーの組み合わせを提供します。効率的な文字列マッチング。
手順:
- トークン化 (入力文字列を個々の単語または文字に分割):
<code class="scala">import org.apache.spark.ml.feature.RegexTokenizer val tokenizer = new RegexTokenizer().setPattern("").setInputCol("text").setMinTokenLength(1).setOutputCol("tokens")</code>
- N グラム生成 (文字シーケンスの作成):
<code class="scala">import org.apache.spark.ml.feature.NGram val ngram = new NGram().setN(3).setInputCol("tokens").setOutputCol("ngrams")</code>
- ベクトル化 (テキストを数値特徴に変換):
<code class="scala">import org.apache.spark.ml.feature.HashingTF val vectorizer = new HashingTF().setInputCol("ngrams").setOutputCol("vectors")</code>
- 局所性依存ハッシュ (LSH):
<code class="scala">import org.apache.spark.ml.feature.{MinHashLSH, MinHashLSHModel} val lsh = new MinHashLSH().setInputCol("vectors").setOutputCol("lsh")</code>
- トランスフォーマーのパイプラインへの結合:
<code class="scala">import org.apache.spark.ml.Pipeline val pipeline = new Pipeline().setStages(Array(tokenizer, ngram, vectorizer, lsh))</code>
- モデルフィッティング:
<code class="scala">val query = Seq("Hello there 7l | real|y like Spark!").toDF("text") val db = Seq( "Hello there ?! I really like Spark ❤️!", "Can anyone suggest an efficient algorithm" ).toDF("text") val model = pipeline.fit(db)</code>
- 変換と結合:
<code class="scala">val dbHashed = model.transform(db) val queryHashed = model.transform(query) model.stages.last.asInstanceOf[MinHashLSHModel] .approxSimilarityJoin(dbHashed, queryHashed, 0.75).show</code>
このアプローチにより、OCR エラーにもかかわらず効率的な文字列マッチングが可能になり、正確な結果が得られます。
以上がApache Spark を使用して OCR エラーと文字列を効率的に照合するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Tomergelistsinpython、あなたはオペレーター、extendmethod、listcomfulting、olitertools.chain、それぞれの特異的advantages:1)operatorissimplebutlessforlargelist;

Python 3では、2つのリストをさまざまな方法で接続できます。1)小さなリストに適したオペレーターを使用しますが、大きなリストには非効率的です。 2)メモリ効率が高い大規模なリストに適した拡張方法を使用しますが、元のリストは変更されます。 3)元のリストを変更せずに、複数のリストをマージするのに適した *オペレーターを使用します。 4)Itertools.chainを使用します。これは、メモリ効率が高い大きなデータセットに適しています。

Join()メソッドを使用することは、Pythonのリストから文字列を接続する最も効率的な方法です。 1)join()メソッドを使用して、効率的で読みやすくなります。 2)サイクルは、大きなリストに演算子を非効率的に使用します。 3)リスト理解とJoin()の組み合わせは、変換が必要なシナリオに適しています。 4)redoce()メソッドは、他のタイプの削減に適していますが、文字列の連結には非効率的です。完全な文は終了します。

pythonexexecutionistheprocessoftransforningpythoncodeintoexecutabletructions.1)interpreterreadSthecode、変換intobytecode、thepythonvirtualmachine(pvm)executes.2)theglobalinterpreeterlock(gil)管理委員会、

Pythonの主な機能には次のものがあります。1。構文は簡潔で理解しやすく、初心者に適しています。 2。動的タイプシステム、開発速度の向上。 3。複数のタスクをサポートするリッチ標準ライブラリ。 4.強力なコミュニティとエコシステム、広範なサポートを提供する。 5。スクリプトと迅速なプロトタイピングに適した解釈。 6.さまざまなプログラミングスタイルに適したマルチパラダイムサポート。

Pythonは解釈された言語ですが、コンパイルプロセスも含まれています。 1)Pythonコードは最初にBytecodeにコンパイルされます。 2)ByteCodeは、Python Virtual Machineによって解釈および実行されます。 3)このハイブリッドメカニズムにより、Pythonは柔軟で効率的になりますが、完全にコンパイルされた言語ほど高速ではありません。

useaforloopwhenteratingoverasequenceor foraspificnumberoftimes; useawhileloopwhentinuninguntinuntilaConditionismet.forloopsareidealforknownownownownownownoptinuptinuptinuptinuptinutionsituations whileoopsuitsituations withinterminedationations。

pythonloopscanleadtoErrorslikeinfiniteloops、ModifiningListsDuringiteration、Off-Oneerrors、Zero-dexingissues、およびNestededLoopinefficiencies.toavoidhese:1)use'i


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

Dreamweaver Mac版
ビジュアル Web 開発ツール

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません
