検索
ホームページバックエンド開発Python チュートリアルPython のマルチプロセッシング ライブラリはどのようにプロセス間通信を簡素化できるのでしょうか?

How can Python's multiprocessing library simplify Interprocess Communication?

Python のプロセス間通信

プロセス間通信 (IPC) により、実行中の複数の Python プロセス間の通信が可能になります。名前付きパイプ、dbus サービス、ソケットの使用など、さまざまなオプションを検討するのは困難な場合があります。この記事では、マルチプロセッシング ライブラリを使用した、より高度で堅牢なソリューションを紹介します。

マルチプロセッシング ライブラリの使用

マルチプロセッシング ライブラリは、Python で IPC を実装する便利で効率的な方法を提供します。ソケットをカプセル化して Python オブジェクトを直接交換できるリスナーとクライアントが提供されます。

メッセージのリスニング

リスニング プロセスを作成するには、Listener クラスを使用します。

<code class="python">from multiprocessing.connection import Listener

address = ('localhost', 6000)
listener = Listener(address, authkey=b'secret password')
conn = listener.accept()
print('connection accepted from', listener.last_accepted)</code>

リスナーは、指定された IP アドレスとポートで受信接続を待機します。接続が確立されると、Connection オブジェクト (conn) が返されます。

メッセージの送信

メッセージを Python オブジェクトとして送信するには、Client クラスを使用します。

<code class="python">from multiprocessing.connection import Client

address = ('localhost', 6000)
conn = Client(address, authkey=b'secret password')
conn.send('close')
conn.close()</code>

Client クラスは指定されたアドレスに接続し、任意のオブジェクトをリッスン プロセスに送信できます。

実装例

1 つのプロセス (listener.py) がメッセージをリッスンし、他の (client.py) がメッセージを送信します。

listener.py:

<code class="python">from multiprocessing.connection import Listener

listener = Listener(('localhost', 6000), authkey=b'secret password')
conn = listener.accept()

message = conn.recv()
if message == 'close':
    conn.close()
    listener.close()
    exit(0)
else:
    conn.close()
    listener.close()
    exit(1)</code>

client.py:

<code class="python">from multiprocessing.connection import Client

conn = Client(('localhost', 6000), authkey=b'secret password')
conn.send('close')
conn.close()</code>

listener.py を実行してから client.py を実行すると、リスナー プロセスはメッセージを受信し、成功を示す戻りコード 0 で終了します。無効なメッセージが送信された場合、リスナーは失敗を示すゼロ以外の戻りコードで終了します。

この例では、Python でのプロセス間通信にマルチプロセッシング ライブラリを使用する簡単さと柔軟性を示します。これはソケットに対する高レベルの抽象化を提供し、プロセス間で Python オブジェクトをシームレスに送受信できるようにします。

以上がPython のマルチプロセッシング ライブラリはどのようにプロセス間通信を簡素化できるのでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
違いを理解する:ループ用とPythonのループ中違いを理解する:ループ用とPythonのループ中May 16, 2025 am 12:17 AM

ThedifferencebetweenaforloopandawhileloopinPythonisthataforloopisusedwhenthenumberofiterationsisknowninadvance,whileawhileloopisusedwhenaconditionneedstobecheckedrepeatedlywithoutknowingthenumberofiterations.1)Forloopsareidealforiteratingoversequence

Pythonループコントロール:VSの場合 - 比較Pythonループコントロール:VSの場合 - 比較May 16, 2025 am 12:16 AM

Pythonでは、ループの場合は、反復の数がわかっている場合に適していますが、ループは反復の数が不明で、より多くの制御が必要な場合に適しています。 1)ループの場合は、簡潔なコードとPythonicコードを使用して、リスト、文字列などのトラバーシーケンスに適しています。 2)条件に応じてループを制御する必要がある場合やユーザーの入力を待つ必要がある場合、ループがより適切ですが、無限のループを避けるために注意を払う必要があります。 3)パフォーマンスに関しては、FORループはわずかに高速ですが、通常、違いは大きくありません。適切なループタイプを選択すると、コードの効率と読みやすさが向上します。

Pythonの2つのリストを組み合わせる方法:5つの簡単な方法Pythonの2つのリストを組み合わせる方法:5つの簡単な方法May 16, 2025 am 12:16 AM

Pythonでは、リストを5つの方法でマージできます。1)シンプルで直感的なオペレーターを使用して、小さなリストに適しています。 2)extend()メソッドを使用して、頻繁に更新する必要があるリストに適した元のリストを直接変更します。 3)要素上でリストの分析式、簡潔、動作を使用する。 4)itertools.chain()関数を使用して効率的なメモリになり、大規模なデータセットに適しています。 5)要素をペアにする必要があるシーンに適しているように、 *演算子とzip()関数を使用します。各方法には特定の用途と利点と短所があり、選択する際にはプロジェクトの要件とパフォーマンスを考慮する必要があります。

ループvs while loop:python構文、ユースケースと例ループvs while loop:python構文、ユースケースと例May 16, 2025 am 12:14 AM

forlopseused whenthentheNumberofiterationsiskが、whileloopsareuseduntiLaconditionismet.1)forloopsareideal for sequenceslikelists、usingsintaxlike'forfruitinfruits:print(fruit) '.2)

Python ConcatenateリストのリストPython ConcatenateリストのリストMay 16, 2025 am 12:08 AM

toconcatenatealistoflistsinpython、useextend、listcomprehensions、itertools.chain、またはrecursivefunctions.1)extendistraighttraightrawardbutverbose.2)listcomprehesionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsised effective forlargerdatasets.3)itertools.chainmerymery-emery-efforience-forforladatas

Pythonの融合リスト:適切な方法を選択しますPythonの融合リスト:適切な方法を選択しますMay 14, 2025 am 12:11 AM

Tomergelistsinpython、あなたはオペレーター、extendmethod、listcomfulting、olitertools.chain、それぞれの特異的advantages:1)operatorissimplebutlessforlargelist;

Python 3の2つのリストを連結する方法は?Python 3の2つのリストを連結する方法は?May 14, 2025 am 12:09 AM

Python 3では、2つのリストをさまざまな方法で接続できます。1)小さなリストに適したオペレーターを使用しますが、大きなリストには非効率的です。 2)メモリ効率が高い大規模なリストに適した拡張方法を使用しますが、元のリストは変更されます。 3)元のリストを変更せずに、複数のリストをマージするのに適した *オペレーターを使用します。 4)Itertools.chainを使用します。これは、メモリ効率が高い大きなデータセットに適しています。

Python Concatenateリスト文字列Python Concatenateリスト文字列May 14, 2025 am 12:08 AM

Join()メソッドを使用することは、Pythonのリストから文字列を接続する最も効率的な方法です。 1)join()メソッドを使用して、効率的で読みやすくなります。 2)サイクルは、大きなリストに演算子を非効率的に使用します。 3)リスト理解とJoin()の組み合わせは、変換が必要なシナリオに適しています。 4)redoce()メソッドは、他のタイプの削減に適していますが、文字列の連結には非効率的です。完全な文は終了します。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

WebStorm Mac版

WebStorm Mac版

便利なJavaScript開発ツール

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)