Spark を使用した中央値と分位点の検索
背景
大規模なデータセットに対する中央値と分位点の計算Hadoop クラスター内の複数のノードに分散することは、ビッグ データ分析における一般的なタスクです。 Spark は、これらの操作を効率的に実行するためのさまざまな方法を提供します。
従来のアプローチ: ローカル計算
小規模なデータセットの場合、データをローカル ノードに収集して、中央値を直接計算します。ただし、大規模なデータセットの場合、このアプローチはメモリとパフォーマンスの制限により現実的ではありません。
分散アプローチ: 近似
大規模なデータセットの場合、Spark は近似分位点推定方法を提供します。これらの方法では、計算オーバーヘッドを削減しながら推定値が得られます。このような方法の 1 つは、Greenwald-Khanna アルゴリズムを使用して分位数を推定する近似Quantile です。 around_percentile SQL 関数は、分位点の推定にも使用できます。
正確な計算
より正確な分位点の計算のために、Spark をサンプリングと組み合わせて使用できます。データの一部をサンプリングすることで、代表値を取得し、分位数をローカルで計算できます。この例で提供される分位関数は、サンプリングを使用して分位数を計算する方法を示しています。
カスタム UDAF
Hive UDAF (ユーザー定義の集計関数) も分位数に利用できます。計算。 Hive は、SQL クエリで直接使用できる、percentile およびpercentile_estimate UDAF を提供します。
結論
Spark は、中央値と分位点を効率的かつ正確に見つけるためのさまざまな方法を提供します。データセットのサイズと必要な精度に応じて、さまざまなアプローチを使用して、各分析の特定の要件を満たすことができます。
以上がSpark は大規模なデータセットの中央値と分位数を効率的に計算するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

Pythonの統計モジュールは、強力なデータ統計分析機能を提供して、生物統計やビジネス分析などのデータの全体的な特性を迅速に理解できるようにします。データポイントを1つずつ見る代わりに、平均や分散などの統計を見て、無視される可能性のある元のデータの傾向と機能を発見し、大きなデータセットをより簡単かつ効果的に比較してください。 このチュートリアルでは、平均を計算し、データセットの分散の程度を測定する方法を説明します。特に明記しない限り、このモジュールのすべての関数は、単に平均を合計するのではなく、平均()関数の計算をサポートします。 浮動小数点数も使用できます。 ランダムをインポートします インポート統計 fractiから

この記事では、numpy、pandas、matplotlib、scikit-learn、tensorflow、django、flask、and requestsなどの人気のあるPythonライブラリについて説明し、科学的コンピューティング、データ分析、視覚化、機械学習、Web開発、Hの使用について説明します。

この記事では、コマンドラインインターフェイス(CLI)の構築に関するPython開発者をガイドします。 Typer、Click、Argparseなどのライブラリを使用して、入力/出力の処理を強調し、CLIの使いやすさを改善するためのユーザーフレンドリーな設計パターンを促進することを詳述しています。

PythonのPandasライブラリを使用する場合、異なる構造を持つ2つのデータフレーム間で列全体をコピーする方法は一般的な問題です。 2つのデータがあるとします...

この記事では、Pythonにおける仮想環境の役割について説明し、プロジェクトの依存関係の管理と競合の回避に焦点を当てています。プロジェクト管理の改善と依存関係の問題を減らすための作成、アクティベーション、およびメリットを詳しく説明しています。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

ドリームウィーバー CS6
ビジュアル Web 開発ツール

Dreamweaver Mac版
ビジュアル Web 開発ツール

メモ帳++7.3.1
使いやすく無料のコードエディター

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ホットトピック



