Spark を使用した中央値と分位点の検索
背景
大規模なデータセットに対する中央値と分位点の計算Hadoop クラスター内の複数のノードに分散することは、ビッグ データ分析における一般的なタスクです。 Spark は、これらの操作を効率的に実行するためのさまざまな方法を提供します。
従来のアプローチ: ローカル計算
小規模なデータセットの場合、データをローカル ノードに収集して、中央値を直接計算します。ただし、大規模なデータセットの場合、このアプローチはメモリとパフォーマンスの制限により現実的ではありません。
分散アプローチ: 近似
大規模なデータセットの場合、Spark は近似分位点推定方法を提供します。これらの方法では、計算オーバーヘッドを削減しながら推定値が得られます。このような方法の 1 つは、Greenwald-Khanna アルゴリズムを使用して分位数を推定する近似Quantile です。 around_percentile SQL 関数は、分位点の推定にも使用できます。
正確な計算
より正確な分位点の計算のために、Spark をサンプリングと組み合わせて使用できます。データの一部をサンプリングすることで、代表値を取得し、分位数をローカルで計算できます。この例で提供される分位関数は、サンプリングを使用して分位数を計算する方法を示しています。
カスタム UDAF
Hive UDAF (ユーザー定義の集計関数) も分位数に利用できます。計算。 Hive は、SQL クエリで直接使用できる、percentile およびpercentile_estimate UDAF を提供します。
結論
Spark は、中央値と分位点を効率的かつ正確に見つけるためのさまざまな方法を提供します。データセットのサイズと必要な精度に応じて、さまざまなアプローチを使用して、各分析の特定の要件を満たすことができます。
以上がSpark は大規模なデータセットの中央値と分位数を効率的に計算するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

toAppendElementStoapyThonList、usetheappend()methodforsingleelements、extend()formultipleElements、andinsert()forspecificopsitions.1)useappend()foraddingoneElementatheend.2)useextend()toaddmultipleelementseffictience.3)

To CreateapythonList、usesquareBrackets []およびSeparateItemswithcommas.1)listsaredynamicandcanholdmixdatatypes.2)useappend()、remaid()、andslicingformanipulation.3)listcompreheNsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsientionforcreating.4)

金融、科学研究、医療、およびAIの分野では、数値データを効率的に保存および処理することが重要です。 1)財務では、メモリマッピングされたファイルとnumpyライブラリを使用すると、データ処理速度が大幅に向上する可能性があります。 2)科学研究の分野では、HDF5ファイルはデータストレージと取得用に最適化されています。 3)医療では、インデックス作成やパーティション化などのデータベース最適化テクノロジーがデータのパフォーマンスを向上させます。 4)AIでは、データシャーディングと分散トレーニングがモデルトレーニングを加速します。システムのパフォーマンスとスケーラビリティは、適切なツールとテクノロジーを選択し、ストレージと処理速度の間のトレードオフを検討することにより、大幅に改善できます。

pythonarraysarasarecreatedusingthearraymodule、notbuilt-inlikelists.1)importthearraymodule.2)specifytheTypecode、emg。、 'i'forintegers.3)Arraysofferbettermemoreefficiency forhomogeneousdatabutlasefutablethanlists。

Shebangラインに加えて、Pythonインタープリターを指定するには多くの方法があります。1。コマンドラインから直接Pythonコマンドを使用します。 2。バッチファイルまたはシェルスクリプトを使用します。 3. makeやcmakeなどのビルドツールを使用します。 4. Invokeなどのタスクランナーを使用します。各方法には利点と短所があり、プロジェクトのニーズに合った方法を選択することが重要です。

forhandlinglaredataSetsinpython、usenumpyArrays forbetterperformance.1)numpyarraysarememory-effictientandfasterfornumericaloperations.2)nusinnnnedarytypeconversions.3)レバレッジベクトル化は、測定済みのマネージメーシェイメージーウェイズデイタイです

inpython、listsusedynamicmemoryallocation with allocation、whilenumpyArraysalocatefixedmemory.1)listsallocatemorememorythanneededededinitivative.2)numpyArrayasallocateexactmemoryforements、rededicablebutlessflexibilityを提供します。

inpython、youcanspecthedatatypeyfelemeremodelernspant.1)usenpynernrump.1)usenpynerp.dloatp.ploatm64、フォーマーpreciscontrolatatypes。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。
