ホームページ >バックエンド開発 >Python チュートリアル >pandas DataFrame の NaN 値を、対応する各列の平均に置き換えるにはどうすればよいですか?
パンダ データフレームで NaN 値を列平均に置き換える
パンダ データフレームでは NaN 値が発生する可能性があり、適切な値での置換が必要になりますデータ分析用。この記事では、NaN を対応する各列の平均に置き換えるという課題について説明します。
numpy 配列とは異なり、pandas DataFrame は numpy 配列に使用される平均化手法を直接適用できません。代わりに、DataFrame.fillna メソッドが簡単な解決策を提供します。
DataFrame.fillna の使用
NaN 値を列の平均値で埋めるには、次を使用します。次のコード:
<code class="python">import pandas as pd # Create a DataFrame with NaN values df = pd.DataFrame({ 'A': [-0.166919, -0.297953, -0.120211, np.nan, np.nan, -0.788073, -0.916080, -0.887858, 1.948430, 0.019698], 'B': [0.979728, -0.912674, -0.540679, -2.027325, np.nan, np.nan, -0.612343, 1.033826, 1.025011, -0.795876], 'C': [-0.632955, -1.365463, -0.680481, 1.533582, 0.461821, np.nan, np.nan, np.nan, -2.982224, -0.046431] }) print("Original DataFrame with NaN values:") print(df) # Calculate column means column_means = df.mean() print("\nColumn means:") print(column_means) # Replace NaN values with column means df_filled = df.fillna(column_means) print("\nDataFrame with NaN values replaced by column means:") print(df_filled)</code>
例:
NaN 値を含む次の DataFrame について考えます:
A B C 0 -0.166919 0.979728 -0.632955 1 -0.297953 -0.912674 -1.365463 2 -0.120211 -0.540679 -0.680481 3 NaN -2.027325 1.533582 4 NaN NaN 0.461821 5 -0.788073 NaN NaN 6 -0.916080 -0.612343 NaN 7 -0.887858 1.033826 NaN 8 1.948430 1.025011 -2.982224 9 0.019698 -0.795876 -0.046431
Using DataFrame。 fillna では、NaN 値が列の平均値に置き換えられます。
A B C 0 -0.166919 0.979728 -0.632955 1 -0.297953 -0.912674 -1.365463 2 -0.120211 -0.540679 -0.680481 3 -0.151121 -2.027325 1.533582 4 -0.151121 -0.231291 0.461821 5 -0.788073 -0.231291 -0.530307 6 -0.916080 -0.612343 -0.530307 7 -0.887858 1.033826 -0.530307 8 1.948430 1.025011 -2.982224 9 0.019698 -0.795876 -0.046431
したがって、NaN 値は適切な列の平均値に置き換えられています。
以上がpandas DataFrame の NaN 値を、対応する各列の平均に置き換えるにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。