Pandas の整形: ロング形式からワイド形式への変換
表形式のデータを扱う場合、多くの場合、ロング形式からワイド形式に再整形する必要があります。 。 Pandas はメルトやスタックなどの関数を提供しますが、複雑な再形成シナリオには十分ではない可能性があります。
提供されたコンテキストには、「Salesman」、「Height」、「product」、そして「価格」。目標は、「product_1」、「price_1」などの 3 つの列を追加したワイド形式に再形成することです。
1 つのアプローチは、ピボット メソッドを利用することです。架空のデータセットを使用した次の例を考えてみましょう。
<code class="python">import pandas as pd data = { 'Salesman': ['Knut', 'Knut', 'Knut', 'Steve'], 'Height': [6, 6, 6, 5], 'product': ['bat', 'ball', 'wand', 'pen'], 'price': [5, 1, 3, 2] } df = pd.DataFrame(data)</code>
この長いデータセットをワイド形式に再形成するには、「Salesman」列を中心にピボットし、「product」列を新しい列ヘッダーとして設定します。 「価格」列は対応する値になります:
<code class="python">df_wide = df.pivot(index='Salesman', columns='product', values='price')</code>
これにより、希望どおりのワイド形式のデータフレームが得られます:
<code class="python">print(df_wide) bat ball wand pen 0 5 1 3 NaN 1 NaN NaN NaN 2</code>
このソリューションは、長いデータフレームをワイド形式のデータフレームに再形成する方法を示します。ピボット メソッドを使用してフォーマットし、Pandas でそのような再形成タスクを実行する簡単な方法の必要性に対処します。
以上がPivot メソッドを使用して長い Pandas データフレームをワイド フォーマットに変換する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Tomergelistsinpython、あなたはオペレーター、extendmethod、listcomfulting、olitertools.chain、それぞれの特異的advantages:1)operatorissimplebutlessforlargelist;

Python 3では、2つのリストをさまざまな方法で接続できます。1)小さなリストに適したオペレーターを使用しますが、大きなリストには非効率的です。 2)メモリ効率が高い大規模なリストに適した拡張方法を使用しますが、元のリストは変更されます。 3)元のリストを変更せずに、複数のリストをマージするのに適した *オペレーターを使用します。 4)Itertools.chainを使用します。これは、メモリ効率が高い大きなデータセットに適しています。

Join()メソッドを使用することは、Pythonのリストから文字列を接続する最も効率的な方法です。 1)join()メソッドを使用して、効率的で読みやすくなります。 2)サイクルは、大きなリストに演算子を非効率的に使用します。 3)リスト理解とJoin()の組み合わせは、変換が必要なシナリオに適しています。 4)redoce()メソッドは、他のタイプの削減に適していますが、文字列の連結には非効率的です。完全な文は終了します。

pythonexexecutionistheprocessoftransforningpythoncodeintoexecutabletructions.1)interpreterreadSthecode、変換intobytecode、thepythonvirtualmachine(pvm)executes.2)theglobalinterpreeterlock(gil)管理委員会、

Pythonの主な機能には次のものがあります。1。構文は簡潔で理解しやすく、初心者に適しています。 2。動的タイプシステム、開発速度の向上。 3。複数のタスクをサポートするリッチ標準ライブラリ。 4.強力なコミュニティとエコシステム、広範なサポートを提供する。 5。スクリプトと迅速なプロトタイピングに適した解釈。 6.さまざまなプログラミングスタイルに適したマルチパラダイムサポート。

Pythonは解釈された言語ですが、コンパイルプロセスも含まれています。 1)Pythonコードは最初にBytecodeにコンパイルされます。 2)ByteCodeは、Python Virtual Machineによって解釈および実行されます。 3)このハイブリッドメカニズムにより、Pythonは柔軟で効率的になりますが、完全にコンパイルされた言語ほど高速ではありません。

useaforloopwhenteratingoverasequenceor foraspificnumberoftimes; useawhileloopwhentinuninguntinuntilaConditionismet.forloopsareidealforknownownownownownownoptinuptinuptinuptinuptinutionsituations whileoopsuitsituations withinterminedationations。

pythonloopscanleadtoErrorslikeinfiniteloops、ModifiningListsDuringiteration、Off-Oneerrors、Zero-dexingissues、およびNestededLoopinefficiencies.toavoidhese:1)use'i


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

メモ帳++7.3.1
使いやすく無料のコードエディター

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!
