列作成における Pandas apply と NumPy Vectorize のパフォーマンス
概要
while Pandas df.apply() はデータフレームを操作するための多用途関数ですが、特に大規模なデータセットの場合、そのパフォーマンスが懸念される可能性があります。 NumPy の np.vectorize() は、既存の列の関数として新しい列を作成するための潜在的な代替手段を提供します。この記事では、2 つのメソッド間の速度の違いを調査し、一般に np.vectorize() の方が速い理由を説明します。
パフォーマンスの比較
広範なベンチマークにより、np.vectorize() が明らかになりました。 ) 一貫して df.apply() を大幅に上回りました。たとえば、100 万行のデータセットでは、2016 MacBook Pro では np.vectorize() が 25 倍高速になりました。この差異は、データセットのサイズが大きくなるにつれてさらに顕著になります。
基礎となるメカニズム
df.apply() は、一連の Python レベルのループを通じて動作します。これにより、重要な問題が発生します。オーバーヘッド。各反復には、新しい Pandas Series オブジェクトの作成、関数の呼び出し、結果の新しい列への追加が含まれます。対照的に、np.vectorize() は NumPy のブロードキャスト ルールを利用して配列上の関数を評価します。このアプローチは、Python ループのオーバーヘッドをバイパスし、最適化された C コードを活用し、実行を大幅に高速化します。
真のベクトル化
真のベクトル化計算の場合、 df.apply も必要ありません。 () または np.vectorize() が最適です。代わりに、ネイティブの NumPy 操作は優れたパフォーマンスを提供します。たとえば、ベクトル化された Division() は、df.apply() や np.vectorize() よりも劇的なパフォーマンスの利点を示します。さらに効率が向上するため、Numba の @njit デコレータを使用して、divide() 関数を効率的な C レベルのコードにコンパイルできます。このアプローチにより、実行時間がさらに短縮され、秒単位ではなくマイクロ秒単位で結果が得られます。
結論
df.apply() はデータフレームに関数を適用するための便利なインターフェイスを提供しますが、データセットが大規模になると、パフォーマンスの限界が明らかになります。パフォーマンスが重要なアプリケーションの場合、NumPy の np.vectorize() と、JIT コンパイルされた Numba の対応物は、新しい列の作成に優れた速度を提供します。また、ネイティブの NumPy 関数を使用した真のベクトル化操作が、大規模なデータ操作にとって最も効率的なオプションであることも注目に値します。
以上がPandas apply と NumPy Vectorize: 新しい列の作成はどちらが速いですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

Python 3.6のピクルスファイルのロードレポートエラー:modulenotFounderror:nomodulenamed ...

風光明媚なスポットコメント分析におけるJieba Wordセグメンテーションの問題を解決する方法は?風光明媚なスポットコメントと分析を行っているとき、私たちはしばしばJieba Wordセグメンテーションツールを使用してテキストを処理します...


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。
