ホームページ >バックエンド開発 >Python チュートリアル >**ソフトマックスとロジッツ: `tf.nn.softmax_cross_entropy_with_logits` を使用する場合とソフトマックスとクロスエントロピーの個別の計算を使用する場合の比較**
ロジットを理解する: ロジットを使用したソフトマックスおよびソフトマックス クロスエントロピーのガイド
機械学習の領域では、「ロジット」という用語が使用されます。ニューラル ネットワーク アーキテクチャと損失関数を理解する上で重要な役割を果たします。この記事では、ロジットの概念を詳しく掘り下げ、2 つの基本的な TensorFlow 関数、tf.nn.softmax と tf.nn.softmax_cross_entropy_with_logits の主な違いを探ります。
ロジットとは何ですか?
ロジットは、ニューラル ネットワーク層のスケーリングされていない線形出力を指します。 0 から 1 の範囲の確率とは異なり、ロジットは任意の実数値を取ることができます。ソフトマックス関数では、ロジットの使用が一般的であり、これらの値を確率に正規化します。
ソフトマックス: ロジットを確率に変換する
tf.nn.softmax 関数は、ロジットを変換します。確率に。これは、スケーリングされていない出力を操作し、すべての確率の合計が 1 になるように出力を 0 から 1 の範囲に押し込みます。この関数は、さまざまなクラスの確率を計算するためにディープ ニューラル ネットワーク (DNN) で広く使用されています。
Softmax Cross-Entropy with Logits: A Combined Approach
tf.nn.softmax_cross_entropy_with_logits は、softmax 関数とクロスエントロピー損失の計算を組み合わせます。以下の手順を 1 つの数学的に効率的な操作で実行します。
クロスエントロピー損失: モデルのパフォーマンスの測定
クロスエントロピー損失は、モデルの予測確率と真のクラス ラベルの間の乖離を定量化します。これはモデルのパフォーマンスを評価するためのメトリックを提供し、分類タスクでよく使用されます。
適切な関数の選択
クロスエントロピー損失とソフトマックス活性化を使用してモデルを最適化する場合、通常は tf.nn.softmax_cross_entropy_with_logits を使用することをお勧めします。この関数は数値の不安定性の問題に対処し、ソフトマックスとクロスエントロピーの計算を個別に実行するよりも数学的に効率的です。
ラベルが単一のクラスに属する状況 (つまり、ワンホット エンコーディング) では、tf の使用を検討してください。 nn.sparse_softmax_cross_entropy_with_logits。この関数は、このようなシナリオでメモリの使用量と効率を最適化します。
以上が**ソフトマックスとロジッツ: `tf.nn.softmax_cross_entropy_with_logits` を使用する場合とソフトマックスとクロスエントロピーの個別の計算を使用する場合の比較**の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。