


ロジットを理解する: ロジットを使用したソフトマックスおよびソフトマックス クロスエントロピーのガイド
機械学習の領域では、「ロジット」という用語が使用されます。ニューラル ネットワーク アーキテクチャと損失関数を理解する上で重要な役割を果たします。この記事では、ロジットの概念を詳しく掘り下げ、2 つの基本的な TensorFlow 関数、tf.nn.softmax と tf.nn.softmax_cross_entropy_with_logits の主な違いを探ります。
ロジットとは何ですか?
ロジットは、ニューラル ネットワーク層のスケーリングされていない線形出力を指します。 0 から 1 の範囲の確率とは異なり、ロジットは任意の実数値を取ることができます。ソフトマックス関数では、ロジットの使用が一般的であり、これらの値を確率に正規化します。
ソフトマックス: ロジットを確率に変換する
tf.nn.softmax 関数は、ロジットを変換します。確率に。これは、スケーリングされていない出力を操作し、すべての確率の合計が 1 になるように出力を 0 から 1 の範囲に押し込みます。この関数は、さまざまなクラスの確率を計算するためにディープ ニューラル ネットワーク (DNN) で広く使用されています。
Softmax Cross-Entropy with Logits: A Combined Approach
tf.nn.softmax_cross_entropy_with_logits は、softmax 関数とクロスエントロピー損失の計算を組み合わせます。以下の手順を 1 つの数学的に効率的な操作で実行します。
- ソフトマックスを使用してロジットを確率に変換します。
- 予測された確率とグランド トゥルース ラベルの間のクロスエントロピー損失を計算します。
クロスエントロピー損失: モデルのパフォーマンスの測定
クロスエントロピー損失は、モデルの予測確率と真のクラス ラベルの間の乖離を定量化します。これはモデルのパフォーマンスを評価するためのメトリックを提供し、分類タスクでよく使用されます。
適切な関数の選択
クロスエントロピー損失とソフトマックス活性化を使用してモデルを最適化する場合、通常は tf.nn.softmax_cross_entropy_with_logits を使用することをお勧めします。この関数は数値の不安定性の問題に対処し、ソフトマックスとクロスエントロピーの計算を個別に実行するよりも数学的に効率的です。
ラベルが単一のクラスに属する状況 (つまり、ワンホット エンコーディング) では、tf の使用を検討してください。 nn.sparse_softmax_cross_entropy_with_logits。この関数は、このようなシナリオでメモリの使用量と効率を最適化します。
以上が**ソフトマックスとロジッツ: `tf.nn.softmax_cross_entropy_with_logits` を使用する場合とソフトマックスとクロスエントロピーの個別の計算を使用する場合の比較**の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このチュートリアルでは、Pythonを使用してZIPFの法則の統計的概念を処理する方法を示し、法律の処理時にPythonの読み取りおよび並べ替えの効率性を示します。 ZIPF分布という用語が何を意味するのか疑問に思うかもしれません。この用語を理解するには、まずZIPFの法律を定義する必要があります。心配しないでください、私は指示を簡素化しようとします。 ZIPFの法則 ZIPFの法則は単に意味します。大きな自然言語のコーパスでは、最も頻繁に発生する単語は、2番目の頻繁な単語のほぼ2倍の頻度で表示されます。 例を見てみましょう。アメリカ英語の茶色のコーパスを見ると、最も頻繁な言葉は「thであることに気付くでしょう。

ノイズの多い画像を扱うことは、特に携帯電話や低解像度のカメラの写真でよくある問題です。 このチュートリアルでは、OpenCVを使用してPythonの画像フィルタリング手法を調査して、この問題に取り組みます。 画像フィルタリング:強力なツール 画像フィルター

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

データサイエンスと処理のお気に入りであるPythonは、高性能コンピューティングのための豊富なエコシステムを提供します。ただし、Pythonの並列プログラミングは、独自の課題を提示します。このチュートリアルでは、これらの課題を調査し、グローバルな承認に焦点を当てています

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

このチュートリアルでは、Python 3にカスタムパイプラインデータ構造を作成し、機能を強化するためにクラスとオペレーターのオーバーロードを活用していることを示しています。 パイプラインの柔軟性は、一連の機能をデータセットに適用する能力にあります。

Pythonオブジェクトのシリアル化と脱介入は、非自明のプログラムの重要な側面です。 Pythonファイルに何かを保存すると、構成ファイルを読み取る場合、またはHTTPリクエストに応答する場合、オブジェクトシリアル化と脱滑り化を行います。 ある意味では、シリアル化と脱派化は、世界で最も退屈なものです。これらすべての形式とプロトコルを気にするのは誰ですか? Pythonオブジェクトを維持またはストリーミングし、後で完全に取得したいと考えています。 これは、概念レベルで世界を見るのに最適な方法です。ただし、実用的なレベルでは、選択したシリアル化スキーム、形式、またはプロトコルは、プログラムの速度、セキュリティ、メンテナンスの自由、およびその他の側面を決定する場合があります。

Pythonの統計モジュールは、強力なデータ統計分析機能を提供して、生物統計やビジネス分析などのデータの全体的な特性を迅速に理解できるようにします。データポイントを1つずつ見る代わりに、平均や分散などの統計を見て、無視される可能性のある元のデータの傾向と機能を発見し、大きなデータセットをより簡単かつ効果的に比較してください。 このチュートリアルでは、平均を計算し、データセットの分散の程度を測定する方法を説明します。特に明記しない限り、このモジュールのすべての関数は、単に平均を合計するのではなく、平均()関数の計算をサポートします。 浮動小数点数も使用できます。 ランダムをインポートします インポート統計 fractiから


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

ドリームウィーバー CS6
ビジュアル Web 開発ツール

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境
