ホームページ >バックエンド開発 >Python チュートリアル >記事の内容に適した質問ベースのタイトルをいくつか示します。 **効率性を重視:** * **NumPy 配列値の置換: しきい値を超える値を効率的に置換する方法** * **Wh
しきい値を超える値に対する NumPy 配列値の効率的な置換
NumPy 配列を扱う場合、多くの場合、特定の基準を満たす要素を次のように置き換える必要があります。特定の値。一般的なシナリオの 1 つは、しきい値を超える値を置換することです。
しきい値の置換
しきい値 T を超える 2D NumPy 配列内のすべての値を値 x に置換するには
<code class="python">arr[arr > T] = x</code>
このメソッドは非常に効率的かつ簡潔であるため、大規模な配列に最適です。
For ループ アプローチとの比較
質問で言及されている for ループのアプローチでは、配列全体を反復処理する必要があります。この方法は、特に大規模な配列の場合、時間がかかり非効率的です。一方、Fancy インデックスは配列全体を一度に処理するため、実行時間が大幅に短縮されます。
使用例
500 x 500 のランダム行列を考えてみましょう。 0.5 より大きいすべての値を 5 に置き換えます。
<code class="python">import numpy as np A = np.random.rand(500, 500) A[A > 0.5] = 5</code>
この操作にかかる時間は、for ループ アプローチと比較してほんの一部です。
以上が記事の内容に適した質問ベースのタイトルをいくつか示します。 **効率性を重視:** * **NumPy 配列値の置換: しきい値を超える値を効率的に置換する方法** * **Whの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。