検索
ホームページバックエンド開発Python チュートリアル単一の割り当てで複数の列を Pandas DataFrame に効率的に追加するにはどうすればよいですか?

How to efficiently add multiple columns to a Pandas DataFrame in a single assignment?

単一の割り当てで Pandas DataFrames に複数の列を追加する

Pandas では、さまざまな方法で複数の列を同時に追加できます。 1 つのアプローチは、各列に個別に値を割り当てることですが、複数の列の場合、これは面倒になる可能性があります。より効率的な方法は、1 つのステップで列を追加することです。

一見すると、列リスト構文 (例: df[['new1', 'new2) を使用してリストまたは配列を複数の新しい列に割り当てます。 ]] = [スカラー, スカラー]) は直感的に思えるかもしれません。ただし、この割り当ては既存の列に対してのみ機能します。

新しい列を追加して 1 回の操作で値を割り当てるには、いくつかの方法を使用できます。

1.反復子のアンパック:

<code class="python">df['new1'], df['new2'], df['new3'] = np.nan, 'dogs', 3</code>

このアプローチでは、新しい列に値を繰り返し割り当てます。

2. DataFrame の拡張:

<code class="python">df[['new1', 'new2', 'new3']] = pd.DataFrame([[np.nan, 'dogs', 3]], index=df.index)</code>

このメソッドは、元の DataFrame のインデックスと一致する単一行を持つ DataFrame を作成し、Pandas の concat 関数を使用して新しい列を元の列にマージします。

3.一時的な DataFrame 結合:

<code class="python">df = pd.concat([df, pd.DataFrame([[np.nan, 'dogs', 3]], index=df.index, columns=['new1', 'new2', 'new3'])], axis=1)</code>

このアプローチでは、新しい列と値を使用して一時的な DataFrame を作成し、それを元の DataFrame に結合します。

4.辞書の割り当て:

<code class="python">df = df.join(pd.DataFrame({'new1': np.nan, 'new2': 'dogs', 'new3': 3}, index=df.index))</code>

このメソッドは、辞書を使用して一時的な DataFrame を作成し、元の DataFrame と結合します。

5. .assign() メソッド:

<code class="python">df = df.assign(new1=np.nan, new2='dogs', new3=3)</code>

.assign() メソッドを使用すると、一度に複数の列を割り当てることができます。

6.列の作成と値の割り当て:

<code class="python">new_cols = ['new1', 'new2', 'new3']
new_vals = [np.nan, 'dogs', 3]
df = df.reindex(columns=df.columns.tolist() + new_cols)
df[new_cols] = new_vals</code>

この手法では、空の列を作成し、値を個別に割り当てます。

複数の個別の割り当て:

<code class="python">df['new1'] = np.nan
df['new2'] = 'dogs'
df['new3'] = 3</code>

他の方法ほど効率的ではありませんが、個々の割り当ては簡単で、少数の新しい列に使用できます。

最適な選択は、特定の要件とパフォーマンスの考慮事項によって異なります。複数の列を同時に追加するには、DataFrame 拡張ま​​たは一時的な DataFrame 結合アプローチが簡潔で効率的なソリューションを提供します。

以上が単一の割り当てで複数の列を Pandas DataFrame に効率的に追加するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
リストと配列の選択は、大規模なデータセットを扱うPythonアプリケーションの全体的なパフォーマンスにどのように影響しますか?リストと配列の選択は、大規模なデータセットを扱うPythonアプリケーションの全体的なパフォーマンスにどのように影響しますか?May 03, 2025 am 12:11 AM

forhandlinglaredataSetsinpython、usenumpyArrays forbetterperformance.1)numpyarraysarememory-effictientandfasterfornumericaloperations.2)nusinnnnedarytypeconversions.3)レバレッジベクトル化は、測定済みのマネージメーシェイメージーウェイズデイタイです

Pythonのリストと配列にメモリがどのように割り当てられるかを説明します。Pythonのリストと配列にメモリがどのように割り当てられるかを説明します。May 03, 2025 am 12:10 AM

inpython、listsusedynamicmemoryallocation with allocation、whilenumpyArraysalocatefixedmemory.1)listsallocatemorememorythanneededededinitivative.2)numpyArrayasallocateexactmemoryforements、rededicablebutlessflexibilityを提供します。

Pythonアレイ内の要素のデータ型をどのように指定しますか?Pythonアレイ内の要素のデータ型をどのように指定しますか?May 03, 2025 am 12:06 AM

inpython、youcanspecthedatatypeyfelemeremodelernspant.1)usenpynernrump.1)usenpynerp.dloatp.ploatm64、フォーマーpreciscontrolatatypes。

Numpyとは何ですか、そしてなぜPythonの数値コンピューティングにとって重要なのですか?Numpyとは何ですか、そしてなぜPythonの数値コンピューティングにとって重要なのですか?May 03, 2025 am 12:03 AM

numpyisessentialfornumericalcomputinginpythonduetoitsspeed、memory efficiency、andcomprehensivematicalfunctions.1)それは、performsoperations.2)numpyArraysaremoremory-efficientthanpythonlists.3)Itofderangeofmathematicaloperty

「隣接するメモリ割り当て」の概念と、配列にとってその重要性について説明します。「隣接するメモリ割り当て」の概念と、配列にとってその重要性について説明します。May 03, 2025 am 12:01 AM

contiguousMemoryAllocationisucial forArraysは、ForeffienceAndfastelementAccess.1)iteenablesConstantTimeAccess、O(1)、DuetodirectAddresscalculation.2)itemprovesefficiencyByAllowingMultiblementFechesperCacheLine.3)itimplifieMememm

Pythonリストをどのようにスライスしますか?Pythonリストをどのようにスライスしますか?May 02, 2025 am 12:14 AM

slicingapythonlistisdoneusingtheyntaxlist [start:stop:step] .hore'showitworks:1)startisthe indexofthefirstelementtoinclude.2)spotisthe indexofthefirmenttoeexclude.3)staptistheincrementbetbetinelements

Numpyアレイで実行できる一般的な操作は何ですか?Numpyアレイで実行できる一般的な操作は何ですか?May 02, 2025 am 12:09 AM

numpyallows forvariousoperationsonarrays:1)basicarithmeticlikeaddition、減算、乗算、および分割; 2)AdvancedperationssuchasmatrixMultiplication;

Pythonを使用したデータ分析では、配列はどのように使用されていますか?Pythonを使用したデータ分析では、配列はどのように使用されていますか?May 02, 2025 am 12:09 AM

Arraysinpython、特にnumpyandpandas、aresentialfordataanalysis、offeringspeedandeficiency.1)numpyarraysenable numpyarraysenable handling forlaredatasents andcomplexoperationslikemoverages.2)Pandasextendsnumpy'scapabivitieswithdataframesfortruc

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境