Python で Pandas を使用してすべての重複アイテムのリストを取得する方法
データセットを操作する場合、重複エントリが発生することがよくあります。この場合、Pandas を使用してデータセット内のすべての重複アイテムを識別したいとします。
これを実現するには、次のアプローチを利用できます。
方法 1 (すべての行を印刷する)重複 ID):
<code class="python">import pandas as pd # Read the CSV data into a DataFrame df = pd.read_csv("dup.csv") # Extract the "ID" column ids = df["ID"] # Create a new DataFrame with only the duplicate values duplicates = df[ids.isin(ids[ids.duplicated()])] # Sort the DataFrame by the "ID" column duplicates.sort_values("ID", inplace=True) # Print the duplicate values print(duplicates)</code>
メソッド 2 (Groupby と重複グループの連結):
このメソッドは重複グループを結合し、簡潔な表現を生成します。重複アイテムのリスト:
<code class="python"># Group the DataFrame by the "ID" column grouped = df.groupby("ID") # Filter the grouped DataFrame to include only groups with more than one row duplicates = [g for _, g in grouped if len(g) > 1] # Concatenate the duplicate groups into a new DataFrame duplicates = pd.concat(duplicates) # Print the duplicate values print(duplicates)</code>
方法 1 または方法 2 のいずれかを使用すると、データセット内のすべての重複アイテムのリストを正常に取得でき、それらを視覚的に検査して不一致を調査できるようになります。
以上がPython で Pandas DataFrame 内の重複アイテムを特定して取得する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

forhandlinglaredataSetsinpython、usenumpyArrays forbetterperformance.1)numpyarraysarememory-effictientandfasterfornumericaloperations.2)nusinnnnedarytypeconversions.3)レバレッジベクトル化は、測定済みのマネージメーシェイメージーウェイズデイタイです

inpython、listsusedynamicmemoryallocation with allocation、whilenumpyArraysalocatefixedmemory.1)listsallocatemorememorythanneededededinitivative.2)numpyArrayasallocateexactmemoryforements、rededicablebutlessflexibilityを提供します。

inpython、youcanspecthedatatypeyfelemeremodelernspant.1)usenpynernrump.1)usenpynerp.dloatp.ploatm64、フォーマーpreciscontrolatatypes。

numpyisessentialfornumericalcomputinginpythonduetoitsspeed、memory efficiency、andcomprehensivematicalfunctions.1)それは、performsoperations.2)numpyArraysaremoremory-efficientthanpythonlists.3)Itofderangeofmathematicaloperty

contiguousMemoryAllocationisucial forArraysは、ForeffienceAndfastelementAccess.1)iteenablesConstantTimeAccess、O(1)、DuetodirectAddresscalculation.2)itemprovesefficiencyByAllowingMultiblementFechesperCacheLine.3)itimplifieMememm

slicingapythonlistisdoneusingtheyntaxlist [start:stop:step] .hore'showitworks:1)startisthe indexofthefirstelementtoinclude.2)spotisthe indexofthefirmenttoeexclude.3)staptistheincrementbetbetinelements

numpyallows forvariousoperationsonarrays:1)basicarithmeticlikeaddition、減算、乗算、および分割; 2)AdvancedperationssuchasmatrixMultiplication;

Arraysinpython、特にnumpyandpandas、aresentialfordataanalysis、offeringspeedandeficiency.1)numpyarraysenable numpyarraysenable handling forlaredatasents andcomplexoperationslikemoverages.2)Pandasextendsnumpy'scapabivitieswithdataframesfortruc


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

ホットトピック









