複数の列を Pandas DataFrame に同時に割り当てる
Pandas でデータフレームを操作するコンテキストでは、複数の列を効率的に追加する方法について疑問が生じます。
最初の試みとその欠点
多くのユーザーは、このタスクを達成するために当然次の構文を試みます:
df[['column_new_1', 'column_new_2', 'column_new_3']] = [np.nan, 'dogs', 3]
ただし、Pandas では列リスト構文で新しい列を作成するときに右側が DataFrame である必要があるため、このアプローチは失敗します。
代替アプローチ
複数の実行可能なソリューション望ましい結果を達成するために存在します。推奨されるアプローチのいくつかを次に示します。
1.イテレータのアンパックを伴う単一列代入
df['column_new_1'], df['column_new_2'], df['column_new_3'] = np.nan, 'dogs', 3
2. Pandas.DataFrame()
df[['column_new_1', 'column_new_2', 'column_new_3']] = pd.DataFrame([[np.nan, 'dogs', 3]], index=df.index)
による DataFrame の拡張 3. Pandas.concat
df = pd.concat( [ df, pd.DataFrame( [[np.nan, 'dogs', 3]], index=df.index, columns=['column_new_1', 'column_new_2', 'column_new_3'] ) ], axis=1 )
4.との連結。 Pandas で参加します。join
df = df.join(pd.DataFrame( [[np.nan, 'dogs', 3]], index=df.index, columns=['column_new_1', 'column_new_2', 'column_new_3'] ))
5. Pandas.join による辞書拡張
df = df.join(pd.DataFrame( { 'column_new_1': np.nan, 'column_new_2': 'dogs', 'column_new_3': 3 }, index=df.index ))
6. .assign()
df = df.assign(column_new_1=np.nan, column_new_2='dogs', column_new_3=3)
7 を使用した複数の列引数。列の作成と割り当て
new_cols = ['column_new_1', 'column_new_2', 'column_new_3'] new_vals = [np.nan, 'dogs', 3] df = df.reindex(columns=df.columns.tolist() + new_cols) # add empty cols df[new_cols] = new_vals # multi-column assignment works for existing cols
8.個別の割り当て
df['column_new_1'] = np.nan df['column_new_2'] = 'dogs' df['column_new_3'] = 3
アプローチの選択は、ユーザーの特定の要件によって異なります。簡素化と効率性を考慮すると、多くの場合、個別の割り当てが推奨されるソリューションとなります。ただし、同じ型または値を持つ複数の列を追加する必要がある場合は、他のアプローチにより柔軟性と簡潔性が得られます。
以上がPandas DataFrame に複数の列を効率的に追加するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

ドリームウィーバー CS6
ビジュアル Web 開発ツール

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

Dreamweaver Mac版
ビジュアル Web 開発ツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。
