Pandas データフレームに複数の列を同時に追加する: ステップバイステップ ガイド
データ分析の取り組みでは、多くの場合、既存の Pandas データフレームを追加の列で拡張します。このプロセスを簡素化するために、一度に複数の列を追加する合理的なアプローチを模索します。
最初の誤解: 複数の列への値の代入
直感的には、次のようなことが予想されるかもしれません。タスクを実行するための構文:
<code class="python">df[['column_new_1', 'column_new_2', 'column_new_3']] = [np.nan, 'dogs', 3]</code>
ただし、このアプローチでは、Pandas の列リスト割り当ての右側の要件 (df[[new1, new2]] = ..) によるハードルが発生します。 .) DataFrame になります。
実用的な解決策: 複数の列の割り当て
めげずに、目標を達成するためにさまざまな手法をナビゲートします:
1.同時代入のための反復子のアンパック
<code class="python">df['column_new_1'], df['column_new_2'], df['column_new_3'] = np.nan, 'dogs', 3</code>
2. DataFrame()
<code class="python">df[['column_new_1', 'column_new_2', 'column_new_3']] = pd.DataFrame([[np.nan, 'dogs', 3]], index=df.index)</code>
3 を使用して単一行を展開します。一時データフレームとの連結
<code class="python">df = pd.concat([ df, pd.DataFrame([[np.nan, 'dogs', 3]], index=df.index, columns=['column_new_1', 'column_new_2', 'column_new_3']) ], axis=1)</code>
4.一時データフレームとの結合
<code class="python">df = df.join(pd.DataFrame([[np.nan, 'dogs', 3]], index=df.index, columns=['column_new_1', 'column_new_2', 'column_new_3']))</code>
5.辞書ベースの一時データフレーム
<code class="python">df = df.join(pd.DataFrame({'column_new_1': np.nan, 'column_new_2': 'dogs', 'column_new_3': 3}, index=df.index))</code>
6.複数の列引数の .assign() (Python 3.6 )
<code class="python">df = df.assign(column_new_1=np.nan, column_new_2='dogs', column_new_3=3)</code>
7.列を作成し、値を個別に割り当てる
<code class="python">df['column_new_1'] = np.nan df['column_new_2'] = 'dogs' df['column_new_3'] = 3</code>
8.個別の割り当て
他のソリューションの優雅さには欠けますが、このアプローチは依然として単純です:
<code class="python">df['column_new_1'] = np.nan df['column_new_2'] = 'dogs' df['column_new_3'] = 3</code>
以上がPandas DataFrame に複数の列を同時に追加するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

Python 3.6のピクルスファイルのロードレポートエラー:modulenotFounderror:nomodulenamed ...

風光明媚なスポットコメント分析におけるJieba Wordセグメンテーションの問題を解決する方法は?風光明媚なスポットコメントと分析を行っているとき、私たちはしばしばJieba Wordセグメンテーションツールを使用してテキストを処理します...


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

メモ帳++7.3.1
使いやすく無料のコードエディター

Dreamweaver Mac版
ビジュアル Web 開発ツール

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン
