検索
ホームページバックエンド開発Python チュートリアルPandas Groupby 内で文字列を結合して一意の値を得るにはどうすればよいですか?

How Can I Combine Strings Within Pandas Groupby for Unique Values?

Pandas Groupby を使用して文字列の共用体を取得する方法

Pandas の groupby メソッドを使用してデータをグループ化する場合、数値列は次を使用して簡単に集計できます。合計のような関数です。ただし、単純な連結が常に必要なわけではないため、文字列列の集約には課題が伴います。この記事では、グループ内の文字列の和集合を取得する方法について説明します。

問題:

次の DataFrame について考えてみましょう:

A B C
1 0.749065 This
2 0.301084 is
3 0.463468 a
4 0.643961 random
1 0.866521 string
2 0.120737 !

DF を適用します。 groupby("A")["B"].sum() は、各グループの列 B の数値の合計を返します。ただし、文字列列 C で df.groupby("A")["C"].sum() を呼び出すと期待どおりに機能せず、文字列が連結されます。

解決策:

カスタム関数:

1 つのアプローチは、グループ内の文字列値を集計するカスタム関数を定義することです。この関数は、apply() メソッドを使用して DataFrame に適用できます。例:

<code class="python">def f(x):
    return Series(dict(A = x['A'].sum(), 
                        B = x['B'].sum(), 
                        C = "{%s}" % ', '.join(x['C'])))

df.groupby('A').apply(f)</code>

これは、グループごとに列 C の文字列の結合を含む DataFrame を返します。文字列は中括弧内に含まれます。

Lambda with . sum():

もう 1 つの方法は、数値列には .sum() を使用し、文字列列にはカスタム連結を使用して、ラムダ関数を groupby オブジェクトに適用することです:

<code class="python">df.groupby('A').apply(lambda x: x.sum())</code>

これにより、数値と連結された文字列の合計を含む DataFrame が返されます。文字列の結合を取得するには、ラムダ関数内で文字列操作を使用できます。

パフォーマンスに関する考慮事項:

カスタム関数を groupby に適用することに注意することが重要です。 object は、数値列で集計関数を使用するよりも遅くなります。大規模なデータセットの場合、このパフォーマンスのトレードオフを考慮する必要があります。

以上がPandas Groupby 内で文字列を結合して一意の値を得るにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
numpyアレイは、アレイモジュールを使用して作成された配列とどのように異なりますか?numpyアレイは、アレイモジュールを使用して作成された配列とどのように異なりますか?Apr 24, 2025 pm 03:53 PM

numpyarraysarasarebetterfornumeroperations andmulti-dimensionaldata、whilethearraymoduleissuitable forbasic、1)numpyexcelsinperformance and forlargedatasentassandcomplexoperations.2)thearraymuremememory-effictientivearientfa

Numpyアレイの使用は、Pythonで配列モジュール配列の使用と比較してどのように比較されますか?Numpyアレイの使用は、Pythonで配列モジュール配列の使用と比較してどのように比較されますか?Apr 24, 2025 pm 03:49 PM

NumPyArraySareBetterforHeavyNumericalComputing、whilethearrayarayismoreSuitableformemory-constrainedprojectswithsimpledatatypes.1)numpyarraysofferarays andatiledance andpeperancedatasandatassandcomplexoperations.2)thearraymoduleisuleiseightweightandmemememe-ef

CTypesモジュールは、Pythonの配列にどのように関連していますか?CTypesモジュールは、Pythonの配列にどのように関連していますか?Apr 24, 2025 pm 03:45 PM

ctypesallowsinging andmanipulatingc-stylearraysinpython.1)usectypestointerfacewithclibrariesforperformance.2)createc-stylearraysfornumericalcomputations.3)passarraystocfunctions foreffientientoperations.how、how、becuutiousmorymanagemation、performanceo

Pythonのコンテキストで「配列」と「リスト」を定義します。Pythonのコンテキストで「配列」と「リスト」を定義します。Apr 24, 2025 pm 03:41 PM

Inpython、「リスト」は、「リスト」、自由主義的なもの、samememory効率が高く、均質な偶然の瞬間の想起された「アレイ」の「アレイ」の「アレイ」の均質な偶発的な想起されたものです

Pythonリストは可変ですか、それとも不変ですか? Pythonアレイはどうですか?Pythonリストは可変ですか、それとも不変ですか? Pythonアレイはどうですか?Apr 24, 2025 pm 03:37 PM

pythonlistsandarraysaraybothmutable.1)listsareflexibleandsupportheTeterdatabutarlessmemory-efficient.2)Arraysaremorememory-efficientiant forhomogeneousdative、ressivelessatile、ressing comerttytytypecodeusageodoavoiderorors。

Python vs. C:重要な違​​いを理解しますPython vs. C:重要な違​​いを理解しますApr 21, 2025 am 12:18 AM

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

Python vs. C:プロジェクトのためにどの言語を選択しますか?Python vs. C:プロジェクトのためにどの言語を選択しますか?Apr 21, 2025 am 12:17 AM

PythonまたはCの選択は、プロジェクトの要件に依存します。1)迅速な開発、データ処理、およびプロトタイプ設計が必要な場合は、Pythonを選択します。 2)高性能、低レイテンシ、および緊密なハードウェアコントロールが必要な場合は、Cを選択します。

Pythonの目標に到達する:毎日2時間のパワーPythonの目標に到達する:毎日2時間のパワーApr 20, 2025 am 12:21 AM

毎日2時間のPython学習を投資することで、プログラミングスキルを効果的に改善できます。 1.新しい知識を学ぶ:ドキュメントを読むか、チュートリアルを見る。 2。練習:コードと完全な演習を書きます。 3。レビュー:学んだコンテンツを統合します。 4。プロジェクトの実践:実際のプロジェクトで学んだことを適用します。このような構造化された学習計画は、Pythonを体系的にマスターし、キャリア目標を達成するのに役立ちます。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

WebStorm Mac版

WebStorm Mac版

便利なJavaScript開発ツール