Pandas DataFrame としてネストされたオブジェクトを含むネストされた JSON を読み取る
ネストされたオブジェクトを含む JSON データを扱う場合、Python で効率的に操作することが重要です。 Pandas は、これを実現するための強力なツール json_normalize を提供します。
配列を列に拡張する
location 配列を個別の列に拡張するには、次のように json_normalize を使用します。
<code class="python">import json import pandas as pd with open('myJson.json') as data_file: data = json.load(data_file) df = pd.json_normalize(data, 'locations', ['date', 'number', 'name'], record_prefix='locations_') print(df)</code>
これにより、拡張された列を持つデータフレームが作成されます:
locations_arrTime locations_arrTimeDiffMin locations_depTime \ 0 06:32 1 06:37 1 06:40 2 08:24 1 locations_depTimeDiffMin locations_name locations_platform \ 0 0 Spital am Pyhrn Bahnhof 2 1 0 Windischgarsten Bahnhof 2 2 Linz/Donau Hbf 1A-B locations_stationIdx locations_track number name date 0 0 R 3932 R 3932 01.10.2016 1 1 R 3932 01.10.2016 2 22 R 3932 01.10.2016
複数の JSON オブジェクトの処理
複数のオブジェクトを含む JSON ファイルの場合、このアプローチは目的のデータ構造によって異なります。
個々の列を保持する
個々の列 (日付、番号、名前、場所) を保持するには、次を使用します:
<code class="python">df = pd.read_json('myJson.json') df.locations = pd.DataFrame(df.locations.values.tolist())['name'] df = df.groupby(['date', 'name', 'number'])['locations'].apply(','.join).reset_index() print(df)</code>
これにより、データがグループ化され、場所が連結されます。
date name number locations 0 2016-01-10 R 3932 Spital am Pyhrn Bahnhof,Windischgarsten Bahnho...
データ構造をフラット化します
フラット化されたデータ構造を希望する場合は、次のことができます。次の設定で json_normalize を使用します:
<code class="python">df = pd.read_json('myJson.json', orient='records', convert_dates=['date']) print(df)</code>
これにより、単一のテーブルにデータが出力されます:
number date name ... locations.arrTimeDiffMin locations.depTimeDiffMin locations.platform 0 R 3932 2016-01-10 R 3932 ... 0 0 2 1 R 3932 2016-01-10 R 3932 ... 1 0 2 2 R 3932 2016-01-10 R 3932 ... 1 - 1A-B
以上がPandas でネストされた JSON オブジェクトを DataFrame として管理するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonは解釈された言語ですが、コンパイルプロセスも含まれています。 1)Pythonコードは最初にBytecodeにコンパイルされます。 2)ByteCodeは、Python Virtual Machineによって解釈および実行されます。 3)このハイブリッドメカニズムにより、Pythonは柔軟で効率的になりますが、完全にコンパイルされた言語ほど高速ではありません。

useaforloopwhenteratingoverasequenceor foraspificnumberoftimes; useawhileloopwhentinuninguntinuntilaConditionismet.forloopsareidealforknownownownownownownoptinuptinuptinuptinuptinutionsituations whileoopsuitsituations withinterminedationations。

pythonloopscanleadtoErrorslikeinfiniteloops、ModifiningListsDuringiteration、Off-Oneerrors、Zero-dexingissues、およびNestededLoopinefficiencies.toavoidhese:1)use'i

forloopsareadvastountousforknowterations and sequences、offeringsimplicityandeadability;

pythonusesahybridmodelofcompilation andtertation:1)thepythoninterpretercompilessourcodeodeplatform-indopent bytecode.2)thepythonvirtualmachine(pvm)thenexecuteTesthisbytecode、balancingeaseoputhswithporformance。

pythonisbothintersedand compiled.1)it'scompiledtobytecode forportabalityacrossplatforms.2)bytecodeisthenは解釈され、開発を許可します。

loopsareideal whenyouwhenyouknumberofiterationsinadvance、foreleloopsarebetterforsituationsは、loopsaremoreedilaConditionismetを使用します

henthenumber ofiterationsisknown advanceの場合、dopendonacondition.1)forloopsareideal foriterating over for -for -for -saredaverseversives likelistorarrays.2)whileopsaresupasiable forsaresutable forscenarioswheretheloopcontinupcontinuspificcond


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SublimeText3 中国語版
中国語版、とても使いやすい

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ドリームウィーバー CS6
ビジュアル Web 開発ツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター
