Pandas DataFrame GroupBy 値カウントの複数の列
Pandas を使用した DataFrame 操作では、データを複数の列でグループ化すると、貴重な洞察が得られます。この記事では、2 つの列でグループ化しながら観測値をカウントする方法と、各グループの最大数を決定する方法を説明します。
複数の列を持つ DataFrame を指定すると、データをグループ化するために 'groupby' 関数を適用できます。特定の列に基づいて。ここでは、「df」という名前のデータフレームがあり、「col1」、「col2」、「col3」、「col4」、「col5」という 5 つの列があります。
<code class="python">import pandas as pd df = pd.DataFrame([ [1.1, 1.1, 1.1, 2.6, 2.5, 3.4,2.6,2.6,3.4,3.4,2.6,1.1,1.1,3.3], list('AAABBBBABCBDDD'), [1.1, 1.7, 2.5, 2.6, 3.3, 3.8,4.0,4.2,4.3,4.5,4.6,4.7,4.7,4.8], ['x/y/z','x/y','x/y/z/n','x/u','x','x/u/v','x/y/z','x','x/u/v/b','-','x/y','x/y/z','x','x/u/v/w'], ['1','3','3','2','4','2','5','3','6','3','5','1','1','1'] ]).T df.columns = ['col1','col2','col3','col4','col5']</code>
行ごとのカウントグループ
各行グループ内の観測値の数をカウントするには、目的の列で 'groupby' 関数を使用してから、'size' 関数を適用します。
<code class="python">result = df.groupby(['col5', 'col2']).size()</code>
これグループ化された列をインデックスとして、サイズを値として持つ DataFrame が生成されます。
<code class="python">print(result)</code>
最大数の決定
それぞれの最大数を決定するには「col2」の値を指定するには、「col2」で「groupby」関数を使用してから、グループ化されたデータに「max」関数を適用します。
<code class="python">result = df.groupby(['col5', 'col2']).size().groupby(level=1).max()</code>
これにより、各「col2」の最大数を持つシリーズが生成されます。 ' value.
<code class="python">print(result)</code>
要約すると、Pandas で「groupby」関数と「size」関数を使用すると、データの効率的な分析と集計が可能になり、ユーザーはさまざまな方法でデータに関する洞察を抽出できるようになります。
以上がPandas DataFrame GroupBy を使用して値のカウントを実行し、複数の列の最大カウントを見つける方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

pythonusesahybridmodelofcompilation andtertation:1)thepythoninterpretercompilessourcodeodeplatform-indopent bytecode.2)thepythonvirtualmachine(pvm)thenexecuteTesthisbytecode、balancingeaseoputhswithporformance。

pythonisbothintersedand compiled.1)it'scompiledtobytecode forportabalityacrossplatforms.2)bytecodeisthenは解釈され、開発を許可します。

loopsareideal whenyouwhenyouknumberofiterationsinadvance、foreleloopsarebetterforsituationsは、loopsaremoreedilaConditionismetを使用します

henthenumber ofiterationsisknown advanceの場合、dopendonacondition.1)forloopsareideal foriterating over for -for -for -saredaverseversives likelistorarrays.2)whileopsaresupasiable forsaresutable forscenarioswheretheloopcontinupcontinuspificcond

pythonisnotpurelyLepted; itusesahybridapproachofbytecodecodecodecodecodecodedruntimerttation.1)pythoncompilessourcodeintobytecode、whodythepythonvirtualmachine(pvm).2)

ToconcatenateListsinpythothesheElements、使用:1)Operatortokeepduplicates、2)asettoremoveduplicates、or3)listcomplunting for controloverduplicates、各メトドハスディフェルフェルフェントパフォーマンスアンドソーダーインプリテーション。

pythonisantertedlanguage、useaseofuseandflexibility-butfactingporformantationationsincriticalapplications.1)解釈されたlikepythonexecuteline-by-lineを解釈します

Useforloopswhenthenumberofiterationsisknowninadvance、andwhiloopswheniterationsdependonacondition.1)forloopsareidealforsecenceslikelistoranges.2)


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

WebStorm Mac版
便利なJavaScript開発ツール

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール
