テキスト ドキュメント間の類似性を判断する方法
問題: 2 つのテキスト ドキュメント間の類似性を計算して、意味的な整合性を評価したいと考えています。
解決策: 文書の類似性を測定する一般的なアプローチは、文書を TF-IDF (用語頻度 - 逆文書頻度) ベクトルに変換することです。 TF-IDF は、文書内の用語の頻度とコーパス全体での希少性に基づいて用語に重みを割り当てます。その後、これらのベクトル間のコサイン類似度が計算され、類似度が定量化されます。
実装: Python の Gensim と scikit-learn は、TF-IDF 変換の堅牢な実装を提供します。 scikit-learn の使用:
<code class="python">from sklearn.feature_extraction.text import TfidfVectorizer documents = [open(f).read() for f in text_files] tfidf = TfidfVectorizer().fit_transform(documents) # Cosine similarity is calculated automatically pairwise_similarity = tfidf * tfidf.T</code>
結果のペアワイズ類似度は、各セルが対応するドキュメント ペア間のコサイン類似度を表す疎行列です。
結果の解釈:スパース行列の次元は、コーパス内のドキュメントの数と同じです。指定された入力ドキュメントとの類似性が最も高いドキュメントを抽出するには、NumPy の np.fill_diagonal() を使用して自己類似性をマスクし、np.nanargmax() を使用して非自己類似性の最大値を見つけます:
<code class="python">result_idx = np.nanargmax(arr[input_idx]) most_similar_doc = corpus[result_idx]</code>
argmax は、自明な最大値 1 (各ドキュメントのそれ自体に対する類似性) を避けるために、マスクされた配列に対して実行されることに注意してください。
以上が異なるテキストドキュメント間の類似性を計算するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SublimeText3 中国語版
中国語版、とても使いやすい

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、
