検索
ホームページバックエンド開発Python チュートリアルPython で安全な暗号化を確保するにはどうすればよいですか?

How to Ensure Secure Encryption in Python?

対称キーを使用した安全な暗号化

Python で安全な暗号化に推奨されるアプローチは、暗号化ライブラリの Fernet レシピを使用することです。整合性検証に HMAC による AES CBC 暗号化を採用し、改ざんや不正な復号化からデータを効果的に保護します。

フェルネットの暗号化と復号化

<code class="python">from cryptography.fernet import Fernet

# Generate a secret key for encryption
key = Fernet.generate_key()

# Encode a message (plaintext)
encoded_message = Fernet(key).encrypt(b"John Doe")

# Decode the encrypted message (ciphertext)
decoded_message = Fernet(key).decrypt(encoded_message)

print(decoded_message.decode())  # Output: John Doe</code>

パスワード派生フェルネット キー

セキュリティのためにランダムに生成されたキーを使用することをお勧めしますが、必要に応じてパスワードからキーを取得することもできます。

<code class="python">from cryptography.fernet import Fernet
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import hashes

def derive_key(password):
    kdf = PBKDF2HMAC(
        algorithm=hashes.SHA256(),
        length=32,
        salt=secrets.token_bytes(16),
        iterations=100_000,
        backend=default_backend()
    )
    return b64e(kdf.derive(password.encode()))

# Generate a password using a key derivation function
key = derive_key(password)

# Encrypt and decrypt using the password-derived Fernet key
encoded_message = Fernet(key).encrypt(b"John Doe")
decoded_message = Fernet(key).decrypt(encoded_message)

print(decoded_message.decode())  # Output: John Doe</code>

データの隠蔽

機密性のないデータの場合は、base64 の使用を検討してください。暗号化の代わりにエンコードする:

<code class="python">from base64 import urlsafe_b64encode as b64e

# Encode data
encoded_data = b64e(b"Hello world!")

# Decode data
decoded_data = b64d(encoded_data)

print(decoded_data)  # Output: b'Hello world!'</code>

データの署名

HMAC を使用して整合性を確保するためにデータに署名する:

<code class="python">import hmac
import hashlib

# Sign data using a secret key
key = secrets.token_bytes(32)
signature = hmac.new(key, b"Data to sign", hashlib.sha256).digest()

# Verify the signature
def verify(data, signature, key):
    expected = hmac.new(key, data, hashlib.sha256).digest()
    return hmac.compare_digest(expected, signature)

# Verify the signature using the same key
print(verify(b"Data to sign", signature, key))  # Output: True</code>

その他: 安全でないスキームの正しい実装

AES CFB:

<code class="python">import secrets
from base64 import urlsafe_b64encode as b64e, urlsafe_b64decode as b64d

from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend

backend = default_backend()

def aes_cfb_encrypt(message, key):
    algorithm = algorithms.AES(key)
    iv = secrets.token_bytes(algorithm.block_size // 8)
    cipher = Cipher(algorithm, modes.CFB(iv), backend=backend)
    encryptor = cipher.encryptor()
    return b64e(iv + encryptor.update(message) + encryptor.finalize())

def aes_cfb_decrypt(ciphertext, key):
    iv_ciphertext = b64d(ciphertext)
    algorithm = algorithms.AES(key)
    size = algorithm.block_size // 8
    iv, encrypted = iv_ciphertext[:size], iv_ciphertext[size:]
    cipher = Cipher(algorithm, modes.CFB(iv), backend=backend)
    decryptor = cipher.decryptor()
    return decryptor.update(encrypted) + decryptor.finalize()</code>

AES ECB:

<code class="python">from base64 import urlsafe_b64encode as b64e, urlsafe_b64decode as b64d

from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.primitives import padding
from cryptography.hazmat.backends import default_backend

backend = default_backend()

def aes_ecb_encrypt(message, key):
    cipher = Cipher(algorithms.AES(key), modes.ECB(), backend=backend)
    encryptor = cipher.encryptor()
    padder = padding.PKCS7(cipher.algorithm.block_size).padder()
    padded_message = padder.update(message.encode()) + padder.finalize()
    return b64e(encryptor.update(padded_message) + encryptor.finalize())

def aes_ecb_decrypt(ciphertext, key):
    cipher = Cipher(algorithms.AES(key), modes.ECB(), backend=backend)
    decryptor = cipher.decryptor()
    unpadder = padding.PKCS7(cipher.algorithm.block_size).unpadder()
    padded_message = decryptor.update(b64d(ciphertext)) + decryptor.finalize()
    return unpadder.update(padded_message) + unpadder.finalize()</code>

注: AES ECB はサポートされていません。安全な暗号化のために推奨されます。

以上がPython で安全な暗号化を確保するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Pythonの学習:2時間の毎日の研究で十分ですか?Pythonの学習:2時間の毎日の研究で十分ですか?Apr 18, 2025 am 12:22 AM

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Web開発用のPython:主要なアプリケーションWeb開発用のPython:主要なアプリケーションApr 18, 2025 am 12:20 AM

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

Python vs. C:パフォーマンスと効率の探索Python vs. C:パフォーマンスと効率の探索Apr 18, 2025 am 12:20 AM

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Python in Action:実世界の例Python in Action:実世界の例Apr 18, 2025 am 12:18 AM

Pythonの実際のアプリケーションには、データ分析、Web開発、人工知能、自動化が含まれます。 1)データ分析では、PythonはPandasとMatplotlibを使用してデータを処理および視覚化します。 2)Web開発では、DjangoおよびFlask FrameworksがWebアプリケーションの作成を簡素化します。 3)人工知能の分野では、TensorflowとPytorchがモデルの構築と訓練に使用されます。 4)自動化に関しては、ファイルのコピーなどのタスクにPythonスクリプトを使用できます。

Pythonの主な用途:包括的な概要Pythonの主な用途:包括的な概要Apr 18, 2025 am 12:18 AM

Pythonは、データサイエンス、Web開発、自動化スクリプトフィールドで広く使用されています。 1)データサイエンスでは、PythonはNumpyやPandasなどのライブラリを介してデータ処理と分析を簡素化します。 2)Web開発では、DjangoおよびFlask Frameworksにより、開発者はアプリケーションを迅速に構築できます。 3)自動化されたスクリプトでは、Pythonのシンプルさと標準ライブラリが理想的になります。

Pythonの主な目的:柔軟性と使いやすさPythonの主な目的:柔軟性と使いやすさApr 17, 2025 am 12:14 AM

Pythonの柔軟性は、マルチパラダイムサポートと動的タイプシステムに反映されていますが、使いやすさはシンプルな構文とリッチ標準ライブラリに由来しています。 1。柔軟性:オブジェクト指向、機能的および手続き的プログラミングをサポートし、動的タイプシステムは開発効率を向上させます。 2。使いやすさ:文法は自然言語に近く、標準的なライブラリは幅広い機能をカバーし、開発プロセスを簡素化します。

Python:汎用性の高いプログラミングの力Python:汎用性の高いプログラミングの力Apr 17, 2025 am 12:09 AM

Pythonは、初心者から上級開発者までのすべてのニーズに適した、そのシンプルさとパワーに非常に好まれています。その汎用性は、次のことに反映されています。1)学習と使用が簡単、シンプルな構文。 2)Numpy、Pandasなどの豊富なライブラリとフレームワーク。 3)さまざまなオペレーティングシステムで実行できるクロスプラットフォームサポート。 4)作業効率を向上させるためのスクリプトおよび自動化タスクに適しています。

1日2時間でPythonを学ぶ:実用的なガイド1日2時間でPythonを学ぶ:実用的なガイドApr 17, 2025 am 12:05 AM

はい、1日2時間でPythonを学びます。 1.合理的な学習計画を作成します。2。適切な学習リソースを選択します。3。実践を通じて学んだ知識を統合します。これらの手順は、短時間でPythonをマスターするのに役立ちます。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。