検索
ホームページバックエンド開発Python チュートリアルOpenRAG: 大規模な言語モデルを使用してデータ クエリを強化するオープンソース GenAI アプリケーション

OpenRAG: An Open-Source GenAI Application to Supercharge Data Queries with Large Language Models

人工知能の時代において、企業や開発者はデータ分析と顧客との対話を合理化するために大規模言語モデル (LLM) をますます活用しています。オープンソースの Generative AI (GenAI) アプリケーションである OpenRAG は、LLM の柔軟性とさまざまなベクトル データベースにわたる効率的なデータ クエリ機能を組み合わせることで、ユーザーを支援します。 PDF を操作している場合でも、大規模なデータセットのクエリを実行している場合でも、保存されたデータから洞察を求めている場合でも、OpenRAG を使用すると、自然言語クエリを使用してデータをシームレスに操作できます。

OpenRAG の主な機能

  1. すべてのオープンソース LLM モデルのサポート OpenRAG は、さまざまなオープンソース LLM と統合するように設計されており、ユーザーは独自のユースケースに最適なモデルを自由に選択できます。このプラットフォームの拡張性により将来の拡張が可能になり、ユーザーは AI 分野の最新の進歩を制限なく利用できるようになります。

  2. 複数のオープンソース ベクトル データベース 統合 OpenRAG は、Chroma、FAISS、Qdrant などの一般的なオープンソース ベクトル データベースをサポートするように事前構成されています。これらのデータベースは、高性能のベクトル検索と取得を容易にし、ユーザーがデータをクエリするときに正確な結果を確実に得ることができます。

  3. PDF アップロードとデータ クエリ OpenRAG の優れた機能の 1 つは、PDF ファイルをアップロードし、構造化されたデータ コレクションに変換する機能です。このため、このアプリケーションは、大量の PDF ベースの情報を扱う専門家にとって非常に役立ちます。 PDF がアップロードされると、ユーザーは選択した LLM を使用してコンテンツをクエリし、迅速かつ効率的に洞察を抽出できます。

  4. 再利用性を高めるための
  5. 永続的なコレクション名 OpenRAG は、アップロードされた PDF に一意のコレクション名を割り当て、ユーザーが同じファイルを再アップロードすることなくデータを返したりクエリしたりできるようにします。この機能により時間を節約し、データ管理をよりシームレスにします。

  6. ベクター データベースの一貫性 使用法 OpenRAG は、データ コレクションを特定のベクター データベースに結び付けることで一貫性を維持します。データベースがコレクションとして選択されると、ユーザーはデータベースを切り替えることができないため、毎回安定して正確なデータを取得できます。

OpenRAG 入門

AI 主導のデータ クエリの世界に飛び込む前に、スムーズなインストールのために次の前提条件を満たしていることを確認してください。

前提条件

Python バージョン: Python 3.9 以降がインストールされていることを確認してください。
Qdrant Docker イメージ: OpenRAG は Qdrant と統合されており、イメージが実行されているはずです。ローカルホストのポート 6333 にアクセスできることを確認してください。

インストール

  1. リポジトリのクローンを作成します:

git clone https://github.com/yourrepo/openrag.git

  1. 仮想環境の作成:
python3 -m venv openrag-env
source openrag-env/bin/activate
  1. 依存関係のインストール:

pip install -r required.txt

  1. スペイシー言語モデルをダウンロード:

python3 -m spacy ダウンロード en_core_web_sm

  1. アプリケーションを実行します:

uvicorn main:app --reload

導入を容易にする Docker 化

デプロイメントに Docker を使用したい開発者は、OpenRAG をコンテナ化できます。

  1. Docker イメージをビルドします:

docker build -t openrag-app .

  1. コンテナを実行します:

docker run -d -p 8000:8000 openrag-app

アプリが実行されたら、ブラウザーで http://localhost:8000 経由でアクセスします。

使用法: API 経由で OpenRAG と対話する

OpenRAG の API ファースト アーキテクチャにより、さまざまなフロントエンド アプリケーションに統合できます。 PDF をアップロードし、API を通じてその内容をクエリする方法の例を次に示します。

PDF をアップロードする

curl -X POST "http://localhost:8000/upload" \
-H "accept: application/json" \
-H "Content-Type: multipart/form-data" \
-F "file=@yourfile.pdf" \
-F "model_name=GPT-3.5" \
-F "vector_db_name=qdrant"

チャットセッションを開始する
PDF をアップロードした後、チャットベースのクエリを開始できます:

curl -X POST "http://localhost:8000/chat" \
-H "Content-Type: application/json" \
-d '{
  "collection_name": "your_collection_name",
  "query": "your_query",
  "model_name": "GPT-3.5",
  "vector_db_name": "qdrant",
  "device": "cpu"
}'

OpenRAG によるスケーラビリティ
OpenRAG の最大の強みの 1 つは、そのスケーラビリティです。 uvicorn などのツールを使用してローカル マシン上で実行できますが、本番環境に対応しており、クラウド プロバイダー、Docker、または Kubernetes を使用してデプロイできます。運用環境では、OpenRAG は Gunicorn などのツールによるスケーリングをサポートし、高トラフィックのユースケースに堅牢なパフォーマンスを提供します。

一般的なエラーと解決策
開発中に、ユーザーは次の一般的なエラーに遭遇する可能性があります:

TypeError: 記述子を直接作成できません。

これを解決するには、protobuf パッケージをバージョン 3.20.x 以下にダウングレードするか、環境変数

を設定することを検討してください。

PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python

結論
OpenRAG は、データのクエリと洞察のために LLM とベクトル データベースの機能を活用したいと考えているユーザーにとって、柔軟なオープンソース ソリューションとして際立っています。開発者、研究者、企業ユーザーのいずれであっても、OpenRAG は、非常に効率的かつ直感的な方法でデータを操作するためのツールを提供します。

詳細な API ドキュメントとその他の例については、OpenRAG の API ドキュメントを参照してください。

OpenRAG への貢献
コミュニティからの貢献を歓迎します!貢献、問題の送信、または機能のリクエストの方法の詳細については、CONTRIBUTING.md を確認してください。

Github リポジトリ リンク
ラグリポジトリを開く

以上がOpenRAG: 大規模な言語モデルを使用してデータ クエリを強化するオープンソース GenAI アプリケーションの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Pythonの実行モデル:コンパイル、解釈、またはその両方?Pythonの実行モデル:コンパイル、解釈、またはその両方?May 10, 2025 am 12:04 AM

pythonisbothcompiledinterted.whenyourunapythonscript、itisfirstcompiledintobytecode、これはdenepythonvirtualmachine(pvm).thishybridapproaChallowsforplatform-platform-denodent-codebutcututicut。

Pythonはラインごとに実行されますか?Pythonはラインごとに実行されますか?May 10, 2025 am 12:03 AM

Pythonは厳密に行ごとの実行ではありませんが、最適化され、インタープレーターメカニズムに基づいて条件付き実行です。インタープリターは、コードをPVMによって実行されるBytecodeに変換し、定数式または最適化ループを事前促進する場合があります。これらのメカニズムを理解することで、コードを最適化し、効率を向上させることができます。

Pythonの2つのリストを連結する代替品は何ですか?Pythonの2つのリストを連結する代替品は何ですか?May 09, 2025 am 12:16 AM

Pythonに2つのリストを接続する多くの方法があります。1。オペレーターを使用しますが、これはシンプルですが、大きなリストでは非効率的です。 2。効率的ですが、元のリストを変更する拡張メソッドを使用します。 3。=演算子を使用します。これは効率的で読み取り可能です。 4。itertools.chain関数を使用します。これはメモリ効率が高いが、追加のインポートが必要です。 5。リストの解析を使用します。これはエレガントですが、複雑すぎる場合があります。選択方法は、コードのコンテキストと要件に基づいている必要があります。

Python:2つのリストをマージする効率的な方法Python:2つのリストをマージする効率的な方法May 09, 2025 am 12:15 AM

Pythonリストをマージするには多くの方法があります。1。オペレーターを使用します。オペレーターは、シンプルですが、大きなリストではメモリ効率的ではありません。 2。効率的ですが、元のリストを変更する拡張メソッドを使用します。 3. Itertools.chainを使用します。これは、大規模なデータセットに適しています。 4.使用 *オペレーター、1つのコードで小規模から中型のリストをマージします。 5. numpy.concatenateを使用します。これは、パフォーマンス要件の高い大規模なデータセットとシナリオに適しています。 6.小さなリストに適したが、非効率的な追加方法を使用します。メソッドを選択するときは、リストのサイズとアプリケーションのシナリオを考慮する必要があります。

コンパイルされた通信言語:長所と短所コンパイルされた通信言語:長所と短所May 09, 2025 am 12:06 AM

compiledlanguagesOfferspeedandsecurity、foredlanguagesprovideeaseofuseandportability.1)compiledlanguageslikec arefasterandsecurebuthavelOnderdevelopmentsplat dependency.2)

Python:ループのために、そして最も完全なガイドPython:ループのために、そして最も完全なガイドMay 09, 2025 am 12:05 AM

Pythonでは、forループは反復可能なオブジェクトを通過するために使用され、条件が満たされたときに操作を繰り返し実行するためにしばらくループが使用されます。 1)ループの例:リストを通過し、要素を印刷します。 2)ループの例:正しいと推測するまで、数値ゲームを推測します。マスタリングサイクルの原則と最適化手法は、コードの効率と信頼性を向上させることができます。

Python concatenateリストを文字列に入れますPython concatenateリストを文字列に入れますMay 09, 2025 am 12:02 AM

リストを文字列に連結するには、PythonのJoin()メソッドを使用して最良の選択です。 1)join()メソッドを使用して、 '' .join(my_list)などのリスト要素を文字列に連結します。 2)数字を含むリストの場合、連結する前にマップ(str、数字)を文字列に変換します。 3) '、'などの複雑なフォーマットに発電機式を使用できます。 4)混合データ型を処理するときは、MAP(STR、Mixed_List)を使用して、すべての要素を文字列に変換できるようにします。 5)大規模なリストには、 '' .join(lage_li)を使用します

Pythonのハイブリッドアプローチ:コンピレーションと解釈を組み合わせたPythonのハイブリッドアプローチ:コンピレーションと解釈を組み合わせたMay 08, 2025 am 12:16 AM

pythonusesahybridapproach、コンコイリティレーショントビテコードと解釈を組み合わせて、コードコンピレッドフォームと非依存性bytecode.2)

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。