Copy を使用した Numpy 配列割り当てでのメモリ割り当て
numpy では、配列割り当ての微妙な違いを理解することが効率的なメモリ管理にとって重要です。既存の配列 A に基づいて numpy 配列 B に値を割り当てる次の方法を考えてみましょう:
-
B = A:
この代入は名前 B を A と同じオブジェクトに追加し、事実上エイリアスを作成します。基礎となるデータが同じであるため、一方の配列を変更するともう一方の配列も変更されます。追加のメモリは割り当てられません。
-
B[:] = A (または B[:]=A[:]?):
どちらのバリアントも、A から既存の配列 B に値をコピーします。成功するには、B が A と同じ形状でなければなりません。この操作は、B に新しいメモリを割り当て、コピーされた値をそれに割り当て、事実上新しい配列を作成します。
-
numpy.copy(B, A):
この構文は正しくありません。意図した構文は B = numpy.copy(A) です。 #2 と同様に、このメソッドは A から B に値をコピーして新しい配列を作成します。ただし、#2 とは異なり、B が既に存在する場合でも新しい配列が割り当てられます。これは、特定のシナリオでは追加のメモリ使用量と潜在的なオーバーヘッドを意味します。
-
numpy.copyto(B, A):
これは有効な構文です#2 と同様に動作します。値を A から B にコピーし、必要に応じて新しいメモリを割り当てます。
これらの違いを理解することは、メモリ使用量を最適化し、numpy 配列を操作するときに意図しない変更を回避するために不可欠です。
以上がNumpy 配列のさまざまな割り当て方法はメモリ割り当てに影響しますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonlistscanstoreanydatatype,arraymodulearraysstoreonetype,andNumPyarraysarefornumericalcomputations.1)Listsareversatilebutlessmemory-efficient.2)Arraymodulearraysarememory-efficientforhomogeneousdata.3)NumPyarraysareoptimizedforperformanceinscient

heouttemptemptostoreavure ofthewrongdatatypeinapythonarray、yure counteractypeerror.thisduetothearraymodule'sstricttypeeencultionyを使用します

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

theScriptisrunningwithwrongthonversionduetorectRectDefaultEntertersettings.tofixthis:1)CheckthedededefaultHaulthonsionsingpython - versionorpython3-- version.2)usevirtualenvironmentsbycreatingonewiththon3.9-mvenvmyenv、andverixe

PythonArraysSupportVariousoperations:1)SlicingExtractsSubsets、2)Appending/ExtendingAdddesements、3)inSertingSelementSatspecificpositions、4)remvingingDeletesements、5)sorting/verversingsorder、and6)listenionsionsionsionsionscreatenewlistsebasedexistin

numpyarraysAressertialentionsionceivationsefirication-efficientnumericalcomputations andDatamanipulation.theyarecrucialindatascience、mashineelearning、物理学、エンジニアリング、および促進可能性への適用性、scaledatiencyを効率的に、forexample、infinancialanalyyy

UseanArray.ArrayOverAlistinPythonは、Performance-criticalCode.1)homogeneousdata:araysavememorywithpedelements.2)Performance-criticalcode:Araysofterbetterbetterfornumerumerumericaleperations.3)interf

いいえ、notallistoperationSaresuptedbyarrays、andviceversa.1)arraysdonotsupportdynamicoperationslikeappendorintorintorinsertizizing、whosimpactsporformance.2)リスト


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 中国語版
中国語版、とても使いやすい

メモ帳++7.3.1
使いやすく無料のコードエディター

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

ホットトピック









