検索
ホームページバックエンド開発Python チュートリアルPython の入れ子関数スコープの UnboundLocalError を解決する方法?

How to Resolve UnboundLocalError in Nested Function Scopes in Python?

UnboundLocalError (入れ子関数スコープ内)

Python では、入れ子関数から外部関数で定義された変数にアクセスすると、UnboundLocalError。次の例を考えてみましょう。

<code class="python">def outer():
    ctr = 0

    def inner():
        ctr += 1

    inner()</code>

このコードを実行すると、内部関数の変数 ctr に対して UnboundLocalError が発生します。このエラーは、Python が ctr を、外部関数で定義されているにもかかわらず、内部関数内のローカル変数として扱うために発生します。この問題を解決するには、内部関数が外部関数のスコープにアクセスできるメカニズムを使用する必要があります。

解決策:

Python 3 では、 が導入されました。 nonlocal ステートメント。非ローカル変数の変更を許可します。 nonlocal を内部関数に追加することで、ctr を非ローカル変数として明示的に宣言し、内部関数内での再バインドを可能にします。

<code class="python">def outer():
    ctr = 0

    def inner():
        nonlocal ctr
        ctr += 1

    inner()</code>

あるいは、Python 2 では、nonlocal ステートメントでは、ベアネームの再バインドを避けるためにリストまたは他のデータ構造内でカウンター変数を囲むことでこの問題を回避できます。

<code class="python">ctr = [0]

def inner():
    ctr[0] += 1</code>
このアプローチでは、リスト内の ctr の値が維持されます。 ctr を使用して、

UnboundLocalError の発生を防ぎます。

以上がPython の入れ子関数スコープの UnboundLocalError を解決する方法?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
リストと配列の選択は、大規模なデータセットを扱うPythonアプリケーションの全体的なパフォーマンスにどのように影響しますか?リストと配列の選択は、大規模なデータセットを扱うPythonアプリケーションの全体的なパフォーマンスにどのように影響しますか?May 03, 2025 am 12:11 AM

forhandlinglaredataSetsinpython、usenumpyArrays forbetterperformance.1)numpyarraysarememory-effictientandfasterfornumericaloperations.2)nusinnnnedarytypeconversions.3)レバレッジベクトル化は、測定済みのマネージメーシェイメージーウェイズデイタイです

Pythonのリストと配列にメモリがどのように割り当てられるかを説明します。Pythonのリストと配列にメモリがどのように割り当てられるかを説明します。May 03, 2025 am 12:10 AM

inpython、listsusedynamicmemoryallocation with allocation、whilenumpyArraysalocatefixedmemory.1)listsallocatemorememorythanneededededinitivative.2)numpyArrayasallocateexactmemoryforements、rededicablebutlessflexibilityを提供します。

Pythonアレイ内の要素のデータ型をどのように指定しますか?Pythonアレイ内の要素のデータ型をどのように指定しますか?May 03, 2025 am 12:06 AM

inpython、youcanspecthedatatypeyfelemeremodelernspant.1)usenpynernrump.1)usenpynerp.dloatp.ploatm64、フォーマーpreciscontrolatatypes。

Numpyとは何ですか、そしてなぜPythonの数値コンピューティングにとって重要なのですか?Numpyとは何ですか、そしてなぜPythonの数値コンピューティングにとって重要なのですか?May 03, 2025 am 12:03 AM

numpyisessentialfornumericalcomputinginpythonduetoitsspeed、memory efficiency、andcomprehensivematicalfunctions.1)それは、performsoperations.2)numpyArraysaremoremory-efficientthanpythonlists.3)Itofderangeofmathematicaloperty

「隣接するメモリ割り当て」の概念と、配列にとってその重要性について説明します。「隣接するメモリ割り当て」の概念と、配列にとってその重要性について説明します。May 03, 2025 am 12:01 AM

contiguousMemoryAllocationisucial forArraysは、ForeffienceAndfastelementAccess.1)iteenablesConstantTimeAccess、O(1)、DuetodirectAddresscalculation.2)itemprovesefficiencyByAllowingMultiblementFechesperCacheLine.3)itimplifieMememm

Pythonリストをどのようにスライスしますか?Pythonリストをどのようにスライスしますか?May 02, 2025 am 12:14 AM

slicingapythonlistisdoneusingtheyntaxlist [start:stop:step] .hore'showitworks:1)startisthe indexofthefirstelementtoinclude.2)spotisthe indexofthefirmenttoeexclude.3)staptistheincrementbetbetinelements

Numpyアレイで実行できる一般的な操作は何ですか?Numpyアレイで実行できる一般的な操作は何ですか?May 02, 2025 am 12:09 AM

numpyallows forvariousoperationsonarrays:1)basicarithmeticlikeaddition、減算、乗算、および分割; 2)AdvancedperationssuchasmatrixMultiplication;

Pythonを使用したデータ分析では、配列はどのように使用されていますか?Pythonを使用したデータ分析では、配列はどのように使用されていますか?May 02, 2025 am 12:09 AM

Arraysinpython、特にnumpyandpandas、aresentialfordataanalysis、offeringspeedandeficiency.1)numpyarraysenable numpyarraysenable handling forlaredatasents andcomplexoperationslikemoverages.2)Pandasextendsnumpy'scapabivitieswithdataframesfortruc

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。