検索
ホームページバックエンド開発Python チュートリアルNumpy 配列に特定の行が含まれているかどうかを確認するにはどうすればよいですか?

How to Determine if a Numpy Array Contains a Specific Row?

Numpy 配列に特定の行が含まれているかどうかを確認する

Numpy 配列を使用する場合、特定の行が存在するかどうかを確認する必要がある場合があります。配列内で。標準の Python リストとは異なり、Numpy 配列は、そのようなチェックを実行するときに特殊なアプローチを必要とする独自のニュアンスを提供します。

Numpy 配列の違い

Python 配列とは異なり、Numpy 配列は、次の場合に異なる動作を示します。 in 演算子を使用した行の存在のテスト:

<code class="python"># Python Array
a = [[1, 2], [10, 20], [100, 200]]
[1, 2] in a  # True
[1, 20] in a  # False

# Numpy Array
a = np.array([[1, 2], [10, 20], [100, 200]])
np.array([1, 2]) in a  # True
np.array([1, 20]) in a  # True  (Unexpected)</code>

効率的な方法

Numpy 配列内の行の存在を効率的にチェックするには、次の方法を検討してください。

  • .tolist() 変換: Numpy 配列をリストに変換し、リストで in 演算子を使用します:
<code class="python">[1, 2] in a.tolist()  # True
[1, 20] in a.tolist()  # False</code>
  • Numpy View: 配列のビューを使用して行の存在を素早く確認します:
<code class="python">any((a[:]==[1,2]).all(1))  # True
any((a[:]==[1,20]).all(1))  # False</code>
  • Numpy に対するジェネレーター: 各行に対して生成配列の値を取得し、ターゲット行と比較します:
<code class="python">any(([1, 2] == x).all() for x in a)  # Stops on first occurrence</code>
  • Numpy 論理関数: Numpy 論理関数を使用して比較を実行します:
<code class="python">any(np.equal(a, [1, 2]).all(1))  # True</code>

パフォーマンスに関する考慮事項

これらのメソッドのパフォーマンスは、配列のサイズと構造によって異なります。 300,000 x 3 配列のタイミングをいくつか示します。

early hit: [9000, 9001, 9002] in 300,000 elements:
    view: 0.01002 seconds
    python list: 0.00305 seconds
    gen over numpy: 0.06470 seconds
    logic equal: 0.00909 seconds

late hit: [899970, 899971, 899972] in 300,000 elements:
    view: 0.00936 seconds
    python list: 0.30604 seconds
    gen over numpy: 6.47660 seconds
    logic equal: 0.00965 seconds

結論

Numpy 配列で行の存在を効率的にチェックするには、 のいずれかを使用することをお勧めします。 tolist()、Numpy ビュー、または Numpy 論理関数メソッド。ジェネレーター メソッドはパフォーマンスのオーバーヘッドが大きいため、使用しないでください。

以上がNumpy 配列に特定の行が含まれているかどうかを確認するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
数値データを保存するためのリストよりも一般的にメモリ効率が高いのはなぜですか?数値データを保存するためのリストよりも一般的にメモリ効率が高いのはなぜですか?May 05, 2025 am 12:15 AM

AlaySaregenerallymorememory-effictient forstring forstring inumericaldataduetotheirfixed-sizenature anddirectmoryaccess.1)AraysstoreElementsinaCourowlock、Reducingoverheadfrompointertersormetadata.2)リスト

PythonリストをPythonアレイに変換するにはどうすればよいですか?PythonリストをPythonアレイに変換するにはどうすればよいですか?May 05, 2025 am 12:10 AM

ToconvertaPythonlisttoanarray,usethearraymodule:1)Importthearraymodule,2)Createalist,3)Usearray(typecode,list)toconvertit,specifyingthetypecodelike'i'forintegers.Thisconversionoptimizesmemoryusageforhomogeneousdata,enhancingperformanceinnumericalcomp

同じPythonリストに異なるデータ型を保存できますか?例を挙げてください。同じPythonリストに異なるデータ型を保存できますか?例を挙げてください。May 05, 2025 am 12:10 AM

Pythonリストは、さまざまな種類のデータを保存できます。サンプルリストには、整数、文字列、フローティングポイント番号、ブール膜、ネストされたリスト、辞書が含まれています。リストの柔軟性は、データ処理とプロトタイピングにおいて価値がありますが、コードの読みやすさと保守性を確保するためには注意して使用する必要があります。

Pythonの配列とリストの違いは何ですか?Pythonの配列とリストの違いは何ですか?May 05, 2025 am 12:06 AM

Pythondoesnothavebuiltinarays; usethearmoduleformemory-efficienthogeneousdatastorage、while-lelistSareversatileformixeddatypes.Arraysareeffientive for forlardatedateSetsetype、wheneasofferistofibuliestibuliestuseduseerieartusedoersorerdatatess。

Pythonで配列を作成するために一般的に使用されるモジュールは何ですか?Pythonで配列を作成するために一般的に使用されるモジュールは何ですか?May 05, 2025 am 12:02 AM

sostCommonlylysedModule forcreatinginpythonisnumpy.1)numProvidesefficientToolsForArrayoperations、理想的なfornumericaldata.2)arrayscanbecreatedusingnp.array()for1dand2dstructures.3)

Pythonリストに要素をどのように追加しますか?Pythonリストに要素をどのように追加しますか?May 04, 2025 am 12:17 AM

toAppendElementStoapyThonList、usetheappend()methodforsingleelements、extend()formultipleElements、andinsert()forspecificopsitions.1)useappend()foraddingoneElementatheend.2)useextend()toaddmultipleelementseffictience.3)

Pythonリストをどのように作成しますか?例を挙げてください。Pythonリストをどのように作成しますか?例を挙げてください。May 04, 2025 am 12:16 AM

To CreateapythonList、usesquareBrackets []およびSeparateItemswithcommas.1)listsaredynamicandcanholdmixdatatypes.2)useappend()、remaid()、andslicingformanipulation.3)listcompreheNsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsientionforcreating.4)

数値データの効率的なストレージと処理が重要な実際のユースケースについて話し合います。数値データの効率的なストレージと処理が重要な実際のユースケースについて話し合います。May 04, 2025 am 12:11 AM

金融、科学研究、医療、およびAIの分野では、数値データを効率的に保存および処理することが重要です。 1)財務では、メモリマッピングされたファイルとnumpyライブラリを使用すると、データ処理速度が大幅に向上する可能性があります。 2)科学研究の分野では、HDF5ファイルはデータストレージと取得用に最適化されています。 3)医療では、インデックス作成やパーティション化などのデータベース最適化テクノロジーがデータのパフォーマンスを向上させます。 4)AIでは、データシャーディングと分散トレーニングがモデルトレーニングを加速します。システムのパフォーマンスとスケーラビリティは、適切なツールとテクノロジーを選択し、ストレージと処理速度の間のトレードオフを検討することにより、大幅に改善できます。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!