検索
ホームページバックエンド開発Python チュートリアル距離と曲率によって制約された複数セグメントの 3 次ベジェ曲線でデータを近似するにはどうすればよいですか?

How to Approximate Data with a Multi-Segment Cubic Bezier Curve Constrained by Distance and Curvature?

距離と曲率制約を使用したマルチセグメント 3 次ベジェ曲線によるデータの近似

問題ステートメント:

目標は、次の 2 つの制約の下で、複数セグメントの 3 次ベジェ曲線を使用して、指定された地理データ ポイントを近似することです。

  1. 曲線とデータ ポイント間の最大距離は、指定された許容値を超えることはできません。
  2. 曲線の曲率は特定の鋭さを超えてはなりません。

解決策:

2 段階の解決策が提案されています。

  1. B-スプライン近似を作成します:

    • FITPACK ライブラリ (scipy Python バインディングを通じてアクセス) を使用して、B-最小二乗法がデータ ポイントに適合するスプライン。
    • B スプラインを使用すると、滑らかさを指定でき、曲率制約を満たす方法が提供されます。
  2. B スプラインをベジェ曲線に変換:

    • 解決策のテキストで提供されているような関数を使用して、B スプラインを複数セグメントのベジェ曲線に変換します。
    • 変換されたベジェ曲線は、B スプラインの滑らかさと曲率のプロパティを継承します。

コード例:

ここにありますアプローチを示す Python スニペット:

<code class="python">import matplotlib.pyplot as plt
import numpy as np
from scipy import interpolate

# Assume the data points are stored in lists x and y.

# Create B-spline approximation
tck, u = interpolate.splprep([x, y], s=3)  # Adjust s parameter for smoothness

# Generate new parameter values for plotting
unew = np.arange(0, 1.01, 0.01)

# Evaluate B-spline at new parameter values
out = interpolate.splev(unew, tck)

# Convert B-spline to Bezier curve
bezier_points = b_spline_to_bezier_series(tck)

# Plot the data points, B-spline, and Bezier curve
plt.figure()
plt.plot(x, y, out[0], out[1], *bezier_points)  # Replace * with individual Bezier curves
plt.show()</code>

注:

このソリューションでは、精度よりも滑らかさを優先します。より厳密な近似の場合、距離の制約が確実に満たされるように、ある程度の滑らかさをトレードオフする必要がある場合があります。

以上が距離と曲率によって制約された複数セグメントの 3 次ベジェ曲線でデータを近似するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Python:主要なアプリケーションの調査Python:主要なアプリケーションの調査Apr 10, 2025 am 09:41 AM

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間でどのくらいのPythonを学ぶことができますか?2時間でどのくらいのPythonを学ぶことができますか?Apr 09, 2025 pm 04:33 PM

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は?プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は?Apr 02, 2025 am 07:18 AM

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか?中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか?Apr 02, 2025 am 07:15 AM

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

Python 3.6にピクルスファイルをロードするときに「__Builtin__」モジュールが見つからない場合はどうすればよいですか?Python 3.6にピクルスファイルをロードするときに「__Builtin__」モジュールが見つからない場合はどうすればよいですか?Apr 02, 2025 am 07:12 AM

Python 3.6のピクルスファイルのロードレポートエラー:modulenotFounderror:nomodulenamed ...

風光明媚なスポットコメント分析におけるJieba Wordセグメンテーションの精度を改善する方法は?風光明媚なスポットコメント分析におけるJieba Wordセグメンテーションの精度を改善する方法は?Apr 02, 2025 am 07:09 AM

風光明媚なスポットコメント分析におけるJieba Wordセグメンテーションの問題を解決する方法は?風光明媚なスポットコメントと分析を行っているとき、私たちはしばしばJieba Wordセグメンテーションツールを使用してテキストを処理します...

正規表現を使用して、最初の閉じたタグと停止に一致する方法は?正規表現を使用して、最初の閉じたタグと停止に一致する方法は?Apr 02, 2025 am 07:06 AM

正規表現を使用して、最初の閉じたタグと停止に一致する方法は? HTMLまたは他のマークアップ言語を扱う場合、しばしば正規表現が必要です...

Investing.comの反クローラーメカニズムをバイパスするニュースデータを取得する方法は?Investing.comの反クローラーメカニズムをバイパスするニュースデータを取得する方法は?Apr 02, 2025 am 07:03 AM

Investing.comの反クラウリング戦略を理解する多くの人々は、Investing.com(https://cn.investing.com/news/latest-news)からのニュースデータをクロールしようとします。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

WebStorm Mac版

WebStorm Mac版

便利なJavaScript開発ツール

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、