曲線のゼロ交差点の決定
Python で、曲線が y 軸と交差する正確な点 (y=0) を見つけます。 ) 難しいかもしれません。 numpy 配列は曲線を表す可能性がありますが、ゼロを識別する直接的な方法は提供されません。
この問題に対処するには、線形補間アプローチを使用できます。次のコードは、正確な交点を見つける方法を示しています:
<code class="python">import numpy as np import matplotlib.pyplot as plt # Generate sample data N = 750 x = 0.4 + np.sort(np.random.rand(N)) * 3.5 y = (x - 4) * np.cos(x * 9.) * np.cos(x * 6 + 0.05) + 0.1 # Define a function to find roots (zeros) def find_roots(x, y): s = np.abs(np.diff(np.sign(y))).astype(bool) return x[:-1][s] + np.diff(x)[s] / (np.abs(y[1:][s] / y[:-1][s]) + 1) # Find the intersection point z = find_roots(x, y) # Plot the curve and the intersection point plt.plot(x, y) plt.plot(z, np.zeros(len(z)), marker="o", ls="", ms=4) plt.show()</code>
このスクリプトは、Y 軸との正確な交点に曲線とマーカーを示すプロットを生成します。
ゼロ以外の値での切片の検索
ゼロ以外の値 (例: y0) での切片を見つけるには、y0 だけシフトされた曲線のゼロを見つけることによって同じアプローチを適用できます。
<code class="python">y0 = 1.4 z = find_roots(x, y - y0) # ... plt.plot(z, np.zeros(len(z)) + y0)</code>
2 つの曲線の交差点
2 つの曲線間の交点を見つけるには、2 つの曲線の差のゼロを見つけます:
<code class="python">x = .4 + np.sort(np.random.rand(N)) * 3.5 y1 = (x - 4) * np.cos(x * 9.) * np.cos(x * 6 + 0.05) + 0.1 y2 = (x - 2) * np.cos(x * 8.) * np.cos(x * 5 + 0.03) + 0.3 z = find_roots(x, y2 - y1) plt.plot(x, y1) plt.plot(x, y2, color="C2") plt.plot(z, np.interp(z, x, y1), marker="o", ls="", ms=4, color="C1")</code>
以上がPython で曲線と Y 軸および他の曲線の交点を見つける方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

Pythonの統計モジュールは、強力なデータ統計分析機能を提供して、生物統計やビジネス分析などのデータの全体的な特性を迅速に理解できるようにします。データポイントを1つずつ見る代わりに、平均や分散などの統計を見て、無視される可能性のある元のデータの傾向と機能を発見し、大きなデータセットをより簡単かつ効果的に比較してください。 このチュートリアルでは、平均を計算し、データセットの分散の程度を測定する方法を説明します。特に明記しない限り、このモジュールのすべての関数は、単に平均を合計するのではなく、平均()関数の計算をサポートします。 浮動小数点数も使用できます。 ランダムをインポートします インポート統計 fractiから

この記事では、numpy、pandas、matplotlib、scikit-learn、tensorflow、django、flask、and requestsなどの人気のあるPythonライブラリについて説明し、科学的コンピューティング、データ分析、視覚化、機械学習、Web開発、Hの使用について説明します。

この記事では、コマンドラインインターフェイス(CLI)の構築に関するPython開発者をガイドします。 Typer、Click、Argparseなどのライブラリを使用して、入力/出力の処理を強調し、CLIの使いやすさを改善するためのユーザーフレンドリーな設計パターンを促進することを詳述しています。

PythonのPandasライブラリを使用する場合、異なる構造を持つ2つのデータフレーム間で列全体をコピーする方法は一般的な問題です。 2つのデータがあるとします...

この記事では、Pythonにおける仮想環境の役割について説明し、プロジェクトの依存関係の管理と競合の回避に焦点を当てています。プロジェクト管理の改善と依存関係の問題を減らすための作成、アクティベーション、およびメリットを詳しく説明しています。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

WebStorm Mac版
便利なJavaScript開発ツール

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ホットトピック



