検索
ホームページバックエンド開発Python チュートリアル独自の AI RAG チャットボットを作成する: LangChain を使用した Python ガイド

文書から即座に回答が得られることを望まない人はいないでしょうか?それはまさに RAG チャットボットが行うことです。検索と AI 生成を組み合わせて、迅速かつ正確な応答を実現します。

このガイドでは、検索拡張生成 (RAG)LangChain および Streamlit を使用してチャットボットを作成する方法を説明します。このチャットボットはナレッジ ベースから関連情報を取得し、言語モデルを使用して応答を生成します。

OpenAIGemini、または Fireworks のいずれを使用するかに関係なく、応答生成のための複数のオプションを提供しながら、各ステップを順を追って説明します。コスト効率の高いソリューションです。

検索拡張生成 (RAG) とは何ですか?

RAG は、取得生成 を組み合わせて、より正確でコンテキストを認識したチャットボット応答を提供する方法です。取得プロセスではナレッジ ベースから関連ドキュメントを取得し、生成プロセスでは言語モデルを使用して、取得したコンテンツに基づいて一貫した応答を作成します。これにより、言語モデル自体がその情報に基づいて特別にトレーニングされていない場合でも、チャットボットは最新のデータを使用して質問に回答できるようになります。

質問に対する答えを常に知っているわけではないパーソナル アシスタントがいると想像してください。ですから、あなたが質問すると、彼らは本を読んで関連する情報を見つけ出し(検索)、その情報を要約して自分の言葉で教えてくれます(生成)。これは基本的に RAG の仕組みであり、両方の長所を組み合わせたものです。

フローチャートでは、RAG プロセスは次のようになります。

Create Your Own AI RAG Chatbot: A Python Guide with LangChain

それでは、独自のチャットボットを取得してみましょう!


プロジェクト環境のセットアップ

このチュートリアルでは主に Python を使用します。JS の知識がある場合は、説明に従って langchain js のドキュメントを読むことができます。

まず、プロジェクト環境をセットアップする必要があります。これには、プロジェクト ディレクトリの作成、依存関係のインストール、さまざまな言語モデルの API キーの設定が含まれます。

1. プロジェクトフォルダーと仮想環境の作成

まず、プロジェクト フォルダーと仮想環境を作成します。

mkdir rag-chatbot
cd rag-chatbot
python -m venv venv
source venv/bin/activate

2. 依存関係をインストールする

次に、requirements.txt ファイルを作成して、必要な依存関係をすべてリストします。

langchain==0.0.329
streamlit==1.27.2
faiss-cpu==1.7.4
python-dotenv==1.0.0
tiktoken==0.5.1
openai==0.27.10
gemini==0.3.1
fireworks==0.4.0
sentence_transformers==2.2.2

次に、これらの依存関係をインストールします。

pip install -r requirements.txt

3. APIキーの設定

チャットボットの応答生成には、OpenAIGemini、または Fireworks を使用します。好みに応じてこれらのいずれかを選択できます。

実験中であっても心配する必要はありません。Fireworks は 1 ドル相当の API キーを無料で提供しており、gemini-1.5-フラッシュ モデルもある程度は無料です。

優先モデルの API キーを保存する .env ファイルを設定します。

mkdir rag-chatbot
cd rag-chatbot
python -m venv venv
source venv/bin/activate

これらのサービスにサインアップして API キーを取得してください。 GeminiFireworks は両方とも無料枠を提供していますが、OpenAI は使用量に応じて課金されます。


ドキュメントの処理とチャンク化

チャットボットにコンテキストを与えるには、ドキュメントを処理し、管理可能なチャンクに分割する必要があります。大きなテキストは埋め込みとインデックス作成のために分割する必要があるため、これは重要です。

1. document_processor.pyを作成する

ドキュメント処理を処理するために document_processor.py という新しい Python スクリプトを作成します。

langchain==0.0.329
streamlit==1.27.2
faiss-cpu==1.7.4
python-dotenv==1.0.0
tiktoken==0.5.1
openai==0.27.10
gemini==0.3.1
fireworks==0.4.0
sentence_transformers==2.2.2

このスクリプトはテキスト ファイルをロードし、チャンク間でコンテキストが失われないように、小さな重複を含む約 1000 文字の小さなチャンクに分割します。処理が完了すると、ドキュメントを埋め込んでインデックスを作成する準備が整います。


埋め込みとインデックス作成の作成

ドキュメントがチャンク化されたので、次のステップは、ドキュメントを 埋め込み (テキストの数値表現) に変換し、高速に取得できるようにインデックスを付けることです。 (機械は言葉より数字を理解しやすいため)

1.embedding_indexer.pyを作成する

embedding_indexer.py という名前の別のスクリプトを作成します:

pip install -r requirements.txt

このスクリプトでは、Hugging Face モデル (all-MiniLM-L6-v2) を使用して埋め込みが作成されます。次に、これらの埋め込みを FAISS ベクターストアに保存します。これにより、クエリに基づいて同様のテキスト チャンクを迅速に取得できます。


取得と応答生成の実装

ここからがエキサイティングな部分です。検索と言語生成を組み合わせるのです。次に、ベクターストアから関連するチャンクを取得し、言語モデルを使用して応答を生成する RAG チェーン を作成します。 (vectorstore は、数値に変換されたデータをベクトルとして保存したデータベースです)

1. rag_chain.pyを作成する

ファイル rag_chain.py を作成しましょう:

# Uncomment your API key
# OPENAI_API_KEY=your_openai_api_key_here
# GEMINI_API_KEY=your_gemini_api_key_here
# FIREWORKS_API_KEY=your_fireworks_api_key_here

ここでは、指定した API キーに基づいて、OpenAIGemini、または Fireworks のいずれかを選択します。 RAG チェーンは、最も関連性の高い上位 3 つのドキュメントを取得し、言語モデルを使用して応答を生成します。

予算や使用方法の好みに応じてモデルを切り替えることができます。GeminiFireworks は無料ですが、OpenAI は使用量に応じて課金されます。


チャットボットインターフェイスの構築

次に、RAG チェーンを使用してユーザー入力を受け取り、応答を生成するシンプルなチャットボット インターフェイスを構築します。

1.chatbot.pyを作成する

chatbot.py という名前の新しいファイルを作成します:

mkdir rag-chatbot
cd rag-chatbot
python -m venv venv
source venv/bin/activate

このスクリプトは、ユーザー入力を継続的にリッスンし、RAG チェーンを通じて処理して、生成された応答を返すコマンドライン チャットボット インターフェイスを作成します。


Streamlit UI の作成

Streamlit を使用して Web インターフェイスを構築し、チャットボットをさらに使いやすくしましょう。これにより、ユーザーはブラウザを通じてチャットボットと対話できるようになります。

1.app.pyを作成する

app.py を作成します:

langchain==0.0.329
streamlit==1.27.2
faiss-cpu==1.7.4
python-dotenv==1.0.0
tiktoken==0.5.1
openai==0.27.10
gemini==0.3.1
fireworks==0.4.0
sentence_transformers==2.2.2

2.Streamlitアプリを実行する

Streamlit アプリを実行するには、以下を使用します:

pip install -r requirements.txt

これにより、テキスト ファイルをアップロードし、質問し、チャットボットから回答を受け取ることができる Web インターフェイスが起動します。


パフォーマンスの最適化

パフォーマンスを向上させるために、テキストを分割するときにチャンク サイズとオーバーラップを試してみることができます。チャンクが大きいほど、より多くのコンテキストが提供されますが、チャンクが小さいほど、検索が高速になる可能性があります。 Streamlit キャッシュを使用して、埋め込みの生成などの高価な操作の繰り返しを避けることもできます。

コストを最適化したい場合は、クエリの複雑さに応じて OpenAIGemini、または Fireworks を切り替えることができます。OpenAI を使用し、コストを削減するための簡単な質問には Gemini または Fireworks を使用します。


まとめ

おめでとうございます!独自の RAG ベースのチャットボットが正常に作成されました。可能性は無限大です:

    自分専用の学習仲間を作成しましょう。
  • 長いドキュメントを読む必要はもうありません。「ざっと書き出してみる」だけで、迅速かつ正確な回答が得られます。
旅はここから始まり、可能性は無限大です!


GitHub で私の作品をフォローできます。お気軽にご連絡ください。私の DM は常に X と LinkedIn でオープンしています。

以上が独自の AI RAG チャットボットを作成する: LangChain を使用した Python ガイドの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Pythonと時間:勉強時間を最大限に活用するPythonと時間:勉強時間を最大限に活用するApr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Python:ゲーム、GUIなどPython:ゲーム、GUIなどApr 13, 2025 am 12:14 AM

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Python vs. C:比較されたアプリケーションとユースケースPython vs. C:比較されたアプリケーションとユースケースApr 12, 2025 am 12:01 AM

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間のPython計画:現実的なアプローチ2時間のPython計画:現実的なアプローチApr 11, 2025 am 12:04 AM

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Python:主要なアプリケーションの調査Python:主要なアプリケーションの調査Apr 10, 2025 am 09:41 AM

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間でどのくらいのPythonを学ぶことができますか?2時間でどのくらいのPythonを学ぶことができますか?Apr 09, 2025 pm 04:33 PM

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は?プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は?Apr 02, 2025 am 07:18 AM

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか?中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか?Apr 02, 2025 am 07:15 AM

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、