検索
ホームページバックエンド開発Python チュートリアルMatplotlib でプロットするとパフォーマンスが低下するのはなぜですか?また、何ができるでしょうか?

When Plotting with Matplotlib, Why Does Performance Suffer and What Can Be Done?

Matplotlib プロットのパフォーマンスに関する考慮事項

さまざまな Python プロット ライブラリを評価する際、Matplotlib の使用時にパフォーマンスの問題が発生する可能性があります。この記事では、Matplotlib のプロットが遅い理由を検討し、その速度を改善するための解決策を提供します。

遅さの原因

Matplotlib のパフォーマンスの低下は、主に次の 2 つの要因に起因します。

  • 頻繁な再描画: fig.canvas.draw() が呼び出されるたびに、軸の境界や目盛りラベルなどの要素を含む Figure 全体が更新されます。このプロセスは計算負荷が高くなります。
  • 多数のサブプロット: 多くの目盛ラベルを特徴とする複数のサブプロットを含むプロットでは、レンダリングが大幅に遅くなる可能性があります。

パフォーマンスの向上

パフォーマンスを向上させるには、次の戦略を検討してください。

1.ブリッティングを使用する:

ブリッティングでは、Figure 全体を再描画するのではなく、キャンバスの特定の部分を更新するだけです。これにより、計算オーバーヘッドが大幅に削減されます。 Matplotlib は、使用される GUI フレームワークに応じて異なるバックエンド固有のブリッティング メソッドを提供します。

2.再描画の制限:

プロット時にanimated=Trueオプションを使用します。この手法を Matplotlib アニメーション モジュールと組み合わせると、キャンバス全体の再描画をトリガーせずに特定のオブジェクトを更新できます。

3.サブプロットのカスタマイズ:

サブプロットと目盛りラベルの数を最小限に抑えます。不要な要素を削除してレンダリング時間を短縮します。

4.コード効率の向上:

コードをリファクタリングして構造を改善し、実行される操作の数を減らします。可能な場合は、ベクトル化された操作を利用します。

例:

これは、copy_from_bbox とrestore_region によるブリッティングを使用した、質問で提供されたコードの最適化されたバージョンです:

<code class="python">import matplotlib.pyplot as plt
import numpy as np
import time

x = np.arange(0, 2*np.pi, 0.01)
y = np.sin(x)

fig, axes = plt.subplots(nrows=6)
fig.show()  # Draw the canvas initially

styles = ['r-', 'g-', 'y-', 'm-', 'k-', 'p-']
lines = [ax.plot(x, y, style)[0] for ax, style in zip(axes, styles)]

# Store background images of the axes
backgrounds = [fig.canvas.copy_from_bbox(ax.bbox) for ax in axes]

tstart = time.time()               
for i in range(1, 200):
    for j, line in enumerate(lines, start=1):
        # Restore the background
        fig.canvas.restore_region(backgrounds[j-1])
        
        # Update the data
        line.set_ydata(sin(j*x+i/10.0))  

        # Draw the artist and blit
        ax.draw_artist(line)
        fig.canvas.blit(ax.bbox)

print('FPS:', 200/(time.time()-tstart))</code>

代替ライブラリ

Matplotlib のパフォーマンスが依然として満足できない場合は、BokehPlotly、または などの代替プロット ライブラリを検討してください。アルタイル。これらのライブラリは、リアルタイムの対話性とパフォーマンスの最適化を優先します。

以上がMatplotlib でプロットするとパフォーマンスが低下するのはなぜですか?また、何ができるでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
LinuxターミナルでPythonバージョンを表示するときに発生する権限の問題を解決する方法は?LinuxターミナルでPythonバージョンを表示するときに発生する権限の問題を解決する方法は?Apr 01, 2025 pm 05:09 PM

LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

HTMLを解析するために美しいスープを使用するにはどうすればよいですか?HTMLを解析するために美しいスープを使用するにはどうすればよいですか?Mar 10, 2025 pm 06:54 PM

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

TensorflowまたはPytorchで深い学習を実行する方法は?TensorflowまたはPytorchで深い学習を実行する方法は?Mar 10, 2025 pm 06:52 PM

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

Pythonの数学モジュール:統計Pythonの数学モジュール:統計Mar 09, 2025 am 11:40 AM

Pythonの統計モジュールは、強力なデータ統計分析機能を提供して、生物統計やビジネス分析などのデータの全体的な特性を迅速に理解できるようにします。データポイントを1つずつ見る代わりに、平均や分散などの統計を見て、無視される可能性のある元のデータの傾向と機能を発見し、大きなデータセットをより簡単かつ効果的に比較してください。 このチュートリアルでは、平均を計算し、データセットの分散の程度を測定する方法を説明します。特に明記しない限り、このモジュールのすべての関数は、単に平均を合計するのではなく、平均()関数の計算をサポートします。 浮動小数点数も使用できます。 ランダムをインポートします インポート統計 fractiから

人気のあるPythonライブラリとその用途は何ですか?人気のあるPythonライブラリとその用途は何ですか?Mar 21, 2025 pm 06:46 PM

この記事では、numpy、pandas、matplotlib、scikit-learn、tensorflow、django、flask、and requestsなどの人気のあるPythonライブラリについて説明し、科学的コンピューティング、データ分析、視覚化、機械学習、Web開発、Hの使用について説明します。

Pythonでコマンドラインインターフェイス(CLI)を作成する方法は?Pythonでコマンドラインインターフェイス(CLI)を作成する方法は?Mar 10, 2025 pm 06:48 PM

この記事では、コマンドラインインターフェイス(CLI)の構築に関するPython開発者をガイドします。 Typer、Click、Argparseなどのライブラリを使用して、入力/出力の処理を強調し、CLIの使いやすさを改善するためのユーザーフレンドリーな設計パターンを促進することを詳述しています。

あるデータフレームの列全体を、Python内の異なる構造を持つ別のデータフレームに効率的にコピーする方法は?あるデータフレームの列全体を、Python内の異なる構造を持つ別のデータフレームに効率的にコピーする方法は?Apr 01, 2025 pm 11:15 PM

PythonのPandasライブラリを使用する場合、異なる構造を持つ2つのデータフレーム間で列全体をコピーする方法は一般的な問題です。 2つのデータがあるとします...

Pythonの仮想環境の目的を説明してください。Pythonの仮想環境の目的を説明してください。Mar 19, 2025 pm 02:27 PM

この記事では、Pythonにおける仮想環境の役割について説明し、プロジェクトの依存関係の管理と競合の回避に焦点を当てています。プロジェクト管理の改善と依存関係の問題を減らすための作成、アクティベーション、およびメリットを詳しく説明しています。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール