検索
ホームページバックエンド開発Python チュートリアルpandas と Matplotlib を使用して Python で列の値によって散布図を色付けする方法

How to Color Scatter Plots by Column Values in Python with pandas and Matplotlib?

パンダと Matplotlib を使用した Python の列値によるカラー散布図

はじめに

前述したように、ggplot2 は便利な機能を提供します美的カスタマイズにより、列の値に基づいて散布図に色を付けることができます。この記事では、pandas と Matplotlib を使用した Python の同等の機能について説明します。

Seaborn を使用した解決策

Python のデータ視覚化ライブラリである Seaborn は、この問題に対する洗練された解決策を提供します。

<code class="python">import seaborn as sns

# Load and clean the data
data = pd.read_csv('data.csv')
data['Gender'] = data['Gender'].astype('category')

# Create the scatter plot with color mapping
sns.relplot(data=data, x='Weight', y='Height', hue='Gender')</code>

このコードは relplot 関数を利用して散布図を作成し、色相パラメーターが Gender 列に基づいて色を割り当てます。

Matplotlib と Dictionary を使用した解決策

Matplotlib を直接使用したい場合は、カラー マッピング ディクショナリを作成し、それを使用して点に色を付けることができます。

<code class="python">import matplotlib.pyplot as plt
import numpy as np

# Load and clean the data
data = pd.read_csv('data.csv')
data['Gender'] = data['Gender'].astype('category')

# Create a color mapping dictionary
categories = np.unique(data['Gender'])
colors = np.linspace(0, 1, len(categories))
color_dict = dict(zip(categories, colors))

# Add a 'Color' column to the DataFrame
data['Color'] = data['Gender'].map(color_dict)

# Create the scatter plot
plt.scatter(data['Weight'], data['Height'], c=data['Color'])
plt.show()</code>

このアプローチでは、color_dict が各カテゴリに色を割り当てます。性別の列。 「Color」列が DataFrame に追加され、散布関数の c パラメーターはこの列を使用して各ポイントの色を決定します。

追加のカスタマイズ

Seaborn と Matplotlib の両方を使用すると、カラー パレットの調整や凡例の追加など、散布図をさらにカスタマイズできます。その他のオプションについては、ドキュメントを参照してください。

結論

Seaborn または Matplotlib を直接使用すると、Python で列の値によって散布図を簡単に色付けできます。 Seaborn は便利な高レベルのインターフェイスを提供し、Matplotlib はカスタマイズをより詳細に制御できます。上記のテクニックを活用すると、Python で有益で視覚的に魅力的な散布図を作成できます。

以上がpandas と Matplotlib を使用して Python で列の値によって散布図を色付けする方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Pythonの融合リスト:適切な方法を選択しますPythonの融合リスト:適切な方法を選択しますMay 14, 2025 am 12:11 AM

Tomergelistsinpython、あなたはオペレーター、extendmethod、listcomfulting、olitertools.chain、それぞれの特異的advantages:1)operatorissimplebutlessforlargelist;

Python 3の2つのリストを連結する方法は?Python 3の2つのリストを連結する方法は?May 14, 2025 am 12:09 AM

Python 3では、2つのリストをさまざまな方法で接続できます。1)小さなリストに適したオペレーターを使用しますが、大きなリストには非効率的です。 2)メモリ効率が高い大規模なリストに適した拡張方法を使用しますが、元のリストは変更されます。 3)元のリストを変更せずに、複数のリストをマージするのに適した *オペレーターを使用します。 4)Itertools.chainを使用します。これは、メモリ効率が高い大きなデータセットに適しています。

Python Concatenateリスト文字列Python Concatenateリスト文字列May 14, 2025 am 12:08 AM

Join()メソッドを使用することは、Pythonのリストから文字列を接続する最も効率的な方法です。 1)join()メソッドを使用して、効率的で読みやすくなります。 2)サイクルは、大きなリストに演算子を非効率的に使用します。 3)リスト理解とJoin()の組み合わせは、変換が必要なシナリオに適しています。 4)redoce()メソッドは、他のタイプの削減に適していますが、文字列の連結には非効率的です。完全な文は終了します。

Pythonの実行、それは何ですか?Pythonの実行、それは何ですか?May 14, 2025 am 12:06 AM

pythonexexecutionistheprocessoftransforningpythoncodeintoexecutabletructions.1)interpreterreadSthecode、変換intobytecode、thepythonvirtualmachine(pvm)executes.2)theglobalinterpreeterlock(gil)管理委員会、

Python:重要な機能は何ですかPython:重要な機能は何ですかMay 14, 2025 am 12:02 AM

Pythonの主な機能には次のものがあります。1。構文は簡潔で理解しやすく、初心者に適しています。 2。動的タイプシステム、開発速度の向上。 3。複数のタスクをサポートするリッチ標準ライブラリ。 4.強力なコミュニティとエコシステム、広範なサポートを提供する。 5。スクリプトと迅速なプロトタイピングに適した解釈。 6.さまざまなプログラミングスタイルに適したマルチパラダイムサポート。

Python:コンパイラまたはインタープリター?Python:コンパイラまたはインタープリター?May 13, 2025 am 12:10 AM

Pythonは解釈された言語ですが、コンパイルプロセスも含まれています。 1)Pythonコードは最初にBytecodeにコンパイルされます。 2)ByteCodeは、Python Virtual Machineによって解釈および実行されます。 3)このハイブリッドメカニズムにより、Pythonは柔軟で効率的になりますが、完全にコンパイルされた言語ほど高速ではありません。

ループvs whileループ用のpython:いつ使用するか?ループvs whileループ用のpython:いつ使用するか?May 13, 2025 am 12:07 AM

useaforloopwhenteratingoverasequenceor foraspificnumberoftimes; useawhileloopwhentinuninguntinuntilaConditionismet.forloopsareidealforknownownownownownownoptinuptinuptinuptinuptinutionsituations whileoopsuitsituations withinterminedationations。

Pythonループ:最も一般的なエラーPythonループ:最も一般的なエラーMay 13, 2025 am 12:07 AM

pythonloopscanleadtoErrorslikeinfiniteloops、ModifiningListsDuringiteration、Off-Oneerrors、Zero-dexingissues、およびNestededLoopinefficiencies.toavoidhese:1)use'i

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

WebStorm Mac版

WebStorm Mac版

便利なJavaScript開発ツール

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。