Pandas でグループ化されたデータフレームに列を追加する方法
データ分析では、多くの場合、データをグループ化し、計算を実行する必要があります。各グループ。 Pandas は、groupby 関数を通じてこれを行う便利な方法を提供します。一般的なタスクの 1 つは、各グループ内の列の値をカウントし、これらのカウントを含む列をデータフレームに追加することです。
データフレーム df:
<code class="python">df = pd.DataFrame({'c':[1,1,1,2,2,2,2],'type':['m','n','o','m','m','n','n']})</code>
の値をカウントするには各 c の type を指定すると、グループ化されたデータフレームで value_counts 関数を使用できます。
<code class="python">g = df.groupby('c')['type'].value_counts().reset_index(name='t')</code>
これにより、グループ数を含む新しいデータフレーム g が作成されます。各グループのサイズを指定して g に列を追加するには、transform 関数を使用します。
<code class="python">g['size'] = df.groupby('c')['type'].transform('size')</code>
transform は、元のデータフレーム内の各グループに関数を適用し、インデックスが一致した Series を返します。元のデータフレーム。この場合、size 関数を使用して各グループ内の要素の数をカウントし、それを新しい列サイズに割り当てます。結果のデータフレーム g は次のようになります。
<code class="python"> c type t size 0 1 m 1 3 1 1 n 1 3 2 1 o 1 3 3 2 m 2 4 4 2 n 2 4</code>
これは、groupby 集計の結果に基づいて、グループ化されたデータフレームに新しい列を追加する簡単な方法を示しています。
以上がPandas でグループ化されたデータフレームにグループ数を含む列を追加する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Tomergelistsinpython、あなたはオペレーター、extendmethod、listcomfulting、olitertools.chain、それぞれの特異的advantages:1)operatorissimplebutlessforlargelist;

Python 3では、2つのリストをさまざまな方法で接続できます。1)小さなリストに適したオペレーターを使用しますが、大きなリストには非効率的です。 2)メモリ効率が高い大規模なリストに適した拡張方法を使用しますが、元のリストは変更されます。 3)元のリストを変更せずに、複数のリストをマージするのに適した *オペレーターを使用します。 4)Itertools.chainを使用します。これは、メモリ効率が高い大きなデータセットに適しています。

Join()メソッドを使用することは、Pythonのリストから文字列を接続する最も効率的な方法です。 1)join()メソッドを使用して、効率的で読みやすくなります。 2)サイクルは、大きなリストに演算子を非効率的に使用します。 3)リスト理解とJoin()の組み合わせは、変換が必要なシナリオに適しています。 4)redoce()メソッドは、他のタイプの削減に適していますが、文字列の連結には非効率的です。完全な文は終了します。

pythonexexecutionistheprocessoftransforningpythoncodeintoexecutabletructions.1)interpreterreadSthecode、変換intobytecode、thepythonvirtualmachine(pvm)executes.2)theglobalinterpreeterlock(gil)管理委員会、

Pythonの主な機能には次のものがあります。1。構文は簡潔で理解しやすく、初心者に適しています。 2。動的タイプシステム、開発速度の向上。 3。複数のタスクをサポートするリッチ標準ライブラリ。 4.強力なコミュニティとエコシステム、広範なサポートを提供する。 5。スクリプトと迅速なプロトタイピングに適した解釈。 6.さまざまなプログラミングスタイルに適したマルチパラダイムサポート。

Pythonは解釈された言語ですが、コンパイルプロセスも含まれています。 1)Pythonコードは最初にBytecodeにコンパイルされます。 2)ByteCodeは、Python Virtual Machineによって解釈および実行されます。 3)このハイブリッドメカニズムにより、Pythonは柔軟で効率的になりますが、完全にコンパイルされた言語ほど高速ではありません。

useaforloopwhenteratingoverasequenceor foraspificnumberoftimes; useawhileloopwhentinuninguntinuntilaConditionismet.forloopsareidealforknownownownownownownoptinuptinuptinuptinuptinutionsituations whileoopsuitsituations withinterminedationations。

pythonloopscanleadtoErrorslikeinfiniteloops、ModifiningListsDuringiteration、Off-Oneerrors、Zero-dexingissues、およびNestededLoopinefficiencies.toavoidhese:1)use'i


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

Dreamweaver Mac版
ビジュアル Web 開発ツール

SublimeText3 中国語版
中国語版、とても使いやすい

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。
