効率的な移動平均フィルターにストライドを使用する
前の説明では、計算効率の高い移動平均フィルターにストライドを使用する利点について検討しました。 。ここでは、このトピックをさらに掘り下げ、詳細な実装を提供します。
ストライドを使用した効率的な移動平均フィルタリング
ストライドを使用して移動平均フィルターを効率的に計算するには、次のようにします。 numpy.lib.stride_tricks の as_strided() 関数を利用します。この関数を使用すると、指定した次元の移動ウィンドウを模倣する配列のビューを作成できます。
次のコードを考えてみましょう:
<code class="python">filtsize = 3 a = numpy.arange(100).reshape((10,10)) b = numpy.lib.stride_tricks.as_strided(a, shape=(a.size,filtsize), strides=(a.itemsize, a.itemsize))</code>
ここでは、as_strided() 関数がビューを作成します。それぞれ (100 - filtsize 1, filtsize) の形状を持つ、一連の重なり合うウィンドウとしての配列の配列。
ウィンドウのローリング
ウィンドウを移動するにはnumpy.roll() 関数を使用できます。
<code class="python">for i in range(0, filtsize-1): if i > 0: b += numpy.roll(b, -(pow(filtsize,2)+1)*i, 0)</code>
これは、filtsize 列ごとにウィンドウを繰り返しシフトし、元の配列上でのウィンドウの動きを効果的にシミュレートします。
平均の計算
平均を計算するには、各行の値を単純に合計し、フィルター内の要素の数で割ります。
<code class="python">filtered = (numpy.sum(b, 1) / pow(filtsize,2)).reshape((a.shape[0],a.shape[1]))</code>
これにより、次のようになります。配列内の各ピクセルの移動平均。
多次元移動平均
上記のアプローチは、提供されている rolling_window() 関数を使用して多次元移動平均を処理するように拡張できます。 by numpy:
<code class="python">def rolling_window(a, window): shape = a.shape[:-1] + (a.shape[-1] - window + 1, window) strides = a.strides + (a.strides[-1],) return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)</code>
この関数を使用すると、配列の任意の軸に沿って移動ウィンドウ ビューを作成できます。
メモリの最適化
重要ですストライド トリックは効率的ですが、多次元配列を扱う場合にはメモリのオーバーヘッドが発生する可能性があることに注意してください。 scipy.ndimage.uniform_filter() 関数は、ストライド トリックに伴うメモリ オーバーヘッドを発生させずに、多次元移動平均を効率的に処理する代替アプローチを提供します。
以上がストライドを使用して効率的な移動平均フィルターを実装するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

Python 3.6のピクルスファイルのロードレポートエラー:modulenotFounderror:nomodulenamed ...


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境
