大規模なデータを含む FastAPI での JSON 応答のパフォーマンスの向上
FastAPI ユーザーは、エンドポイント経由で大量の JSON データを返すときに大幅な遅延に遭遇します。包括的なソリューションには、データの取得、シリアル化、クライアント側の表示などのいくつかの要素への対処が含まれます。
データの抽出と読み取り
コード例で強調されているように、データはデータは最初に Pandas の read_parquet() 関数を使用して Parquet ファイルから抽出され、データが Pandas DataFrame に変換されます。効率を高めるには、大規模なデータセットを処理するために特別に設計された Dask などの代替ライブラリの利用を検討してください。 Dask の read_parquet() メソッドは、データの読み取り速度を大幅に向上させることができます。
JSON シリアル化
後続の JSON シリアル化ステップが主なパフォーマンスのボトルネックであることが判明しています。デフォルトでは、FastAPI は Python の標準 json.dumps() 関数を使用するため、最適なパフォーマンスが得られません。このプロセスを高速化するには、orjson や ujson などの代替 JSON エンコーダを使用して、シリアル化時間を大幅に短縮できます。
応答タイプの最適化
特定のシナリオでは、Pandas DataFrame を返します。 JSON 応答は、DataFrame と JSON 出力の両方に対する RAM 割り当てによりメモリの問題を引き起こす可能性があるためです。これに対処するには、ファイル パスを指定せずに df.to_json() を使用することを検討してください。これにより、JSON 出力がメモリに保存されずにクライアントに直接ストリーミングされます。
クライアント側の表示
最適化されたシリアル化技術を使用しても、クライアント側のブラウザーに大量のデータを表示すると、データの解析とレンダリングにより追加の遅延が発生する可能性があります。これを軽減するには、ブラウザ内表示の代わりにダウンロード リンクを提供するなどのオプションを検討して、データ処理をクライアントのマシンにオフロードします。
これらの手法を実装することで、開発者は、返される FastAPI エンドポイントのパフォーマンスを大幅に向上させることができます。大量の JSON データを処理し、応答性が高く効率的なユーザー エクスペリエンスを保証します。
以上が大規模データの FastAPI で JSON 応答パフォーマンスを最適化する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

Python 3.6のピクルスファイルのロードレポートエラー:modulenotFounderror:nomodulenamed ...


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

WebStorm Mac版
便利なJavaScript開発ツール
