検索
ホームページバックエンド開発Python チュートリアルFastAPI でのキャッシュ: ハイパフォーマンス開発のロックを解除:

In der heutigen digitalen Welt ist jede Aktion – sei es das Wischen in einer Dating-App oder das Abschließen eines Kaufs – auf APIs angewiesen, die hinter den Kulissen effizient arbeiten. Als Back-End-Entwickler wissen wir, dass jede Millisekunde zählt. Aber wie können wir dafür sorgen, dass APIs schneller reagieren? Die Antwort liegt im Caching.

Caching ist eine Technik, die häufig aufgerufene Daten im Speicher speichert und es APIs ermöglicht, sofort zu reagieren, anstatt jedes Mal eine langsamere Datenbank abzufragen. Stellen Sie sich das so vor, als ob Sie wichtige Zutaten (Salz, Pfeffer, Öl) auf Ihrer Küchenarbeitsplatte aufbewahren, anstatt sie jedes Mal, wenn Sie kochen, aus der Speisekammer zu holen – das spart Zeit und macht den Prozess effizienter. Ebenso reduziert Caching die API-Antwortzeiten, indem häufig angeforderte Daten an einem schnellen, zugänglichen Ort wie Redis gespeichert werden.

Erforderliche Bibliotheken müssen installiert werden

Um eine Verbindung mit Redis Cache mit FastAPI herzustellen, müssen die folgenden Bibliotheken vorinstalliert sein.

pip install fastapi uvicorn aiocache pydantic

Pydantic dient zum Erstellen von Datenbanktabellen und -strukturen. aiocache führt asynchrone Vorgänge im Cache aus. uvicorn ist für den Serverbetrieb verantwortlich.

Redis-Einrichtung und -Verifizierung:

Eine direkte Einrichtung von Redis in einem Windows-System ist derzeit nicht möglich. Daher muss es im Windows-Subsystem für Linux eingerichtet und ausgeführt werden. Anweisungen zur Installation von WSL finden Sie unten

Caching in FastAPI: Unlocking High-Performance Development:

WSL installieren | Microsoft Learn

Installieren Sie das Windows-Subsystem für Linux mit dem Befehl wsl --install. Verwenden Sie ein Bash-Terminal auf Ihrem Windows-Computer, auf dem Ihre bevorzugte Linux-Distribution ausgeführt wird – Ubuntu, Debian, SUSE, Kali, Fedora, Pengwin, Alpine und mehr sind verfügbar.

learn.microsoft.com

Post installing WSL, the following commands are required to install Redis

sudo apt update
sudo apt install redis-server
sudo systemctl start redis

To test Redis server connectivity, the following command is used

redis-cli

After this command, it will enter into a virtual terminal of port 6379. In that terminal, the redis commands can be typed and tested.

Setting Up the FastAPI Application

Let’s create a simple FastAPI app that retrieves user information and caches it for future requests. We will use Redis for storing cached responses.

Step 1: Define the Pydantic Model for User Data

We’ll use Pydantic to define our User model, which represents the structure of the API response.

from pydantic import BaseModel

class User(BaseModel):
    id: int
    name: str
    email: str
    age: int

Step 2: Create a Caching Decorator

To avoid repeating the caching logic for each endpoint, we’ll create a reusable caching decorator using the aiocache library. This decorator will attempt to retrieve the response from Redis before calling the actual function.

import json
from functools import wraps
from aiocache import Cache
from fastapi import HTTPException

def cache_response(ttl: int = 60, namespace: str = "main"):
    """
    Caching decorator for FastAPI endpoints.

    ttl: Time to live for the cache in seconds.
    namespace: Namespace for cache keys in Redis.
    """
    def decorator(func):
        @wraps(func)
        async def wrapper(*args, **kwargs):
            user_id = kwargs.get('user_id') or args[0]  # Assuming the user ID is the first argument
            cache_key = f"{namespace}:user:{user_id}"

            cache = Cache.REDIS(endpoint="localhost", port=6379, namespace=namespace)

            # Try to retrieve data from cache
            cached_value = await cache.get(cache_key)
            if cached_value:
                return json.loads(cached_value)  # Return cached data

            # Call the actual function if cache is not hit
            response = await func(*args, **kwargs)

            try:
                # Store the response in Redis with a TTL
                await cache.set(cache_key, json.dumps(response), ttl=ttl)
            except Exception as e:
                raise HTTPException(status_code=500, detail=f"Error caching data: {e}")

            return response
        return wrapper
    return decorator

Step 3: Implement a FastAPI Route for User Details

We’ll now implement a FastAPI route that retrieves user information based on a user ID. The response will be cached using Redis for faster access in subsequent requests.

from fastapi import FastAPI

app = FastAPI()

# Sample data representing users in a database
users_db = {
    1: {"id": 1, "name": "Alice", "email": "alice@example.com", "age": 25},
    2: {"id": 2, "name": "Bob", "email": "bob@example.com", "age": 30},
    3: {"id": 3, "name": "Charlie", "email": "charlie@example.com", "age": 22},
}

@app.get("/users/{user_id}")
@cache_response(ttl=120, namespace="users")
async def get_user_details(user_id: int):
    # Simulate a database call by retrieving data from users_db
    user = users_db.get(user_id)
    if not user:
        raise HTTPException(status_code=404, detail="User not found")

    return user

Step 4: Run the Application

Start your FastAPI application by running:

uvicorn main:app --reload

Now, you can test the API by fetching user details via:

http://127.0.0.1:8000/users/1

The first request will fetch the data from the users_db, but subsequent requests will retrieve the data from Redis.

Testing the Cache

You can verify the cache by inspecting the keys stored in Redis. Open the Redis CLI:

redis-cli
KEYS *

You will get all keys that have been stored in the Redis till TTL.

How Caching Works in This Example

First Request

: When the user data is requested for the first time, the API fetches it from the database (users_db) and stores the result in Redis with a time-to-live (TTL) of 120 seconds.

Subsequent Requests:

Any subsequent requests for the same user within the TTL period are served directly from Redis, making the response faster and reducing the load on the database.

TTL (Time to Live):

After 120 seconds, the cache entry expires, and the data is fetched from the database again on the next request, refreshing the cache.

Conclusion

In this tutorial, we’ve demonstrated how to implement Redis caching in a FastAPI application using a simple user details example. By caching API responses, you can significantly improve the performance of your application, particularly for data that doesn't change frequently.

Please do upvote and share if you find this article useful.

以上がFastAPI でのキャッシュ: ハイパフォーマンス開発のロックを解除:の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Pythonを使用してテキストファイルのZIPF配布を見つける方法Pythonを使用してテキストファイルのZIPF配布を見つける方法Mar 05, 2025 am 09:58 AM

このチュートリアルでは、Pythonを使用してZIPFの法則の統計的概念を処理する方法を示し、法律の処理時にPythonの読み取りおよび並べ替えの効率性を示します。 ZIPF分布という用語が何を意味するのか疑問に思うかもしれません。この用語を理解するには、まずZIPFの法律を定義する必要があります。心配しないでください、私は指示を簡素化しようとします。 ZIPFの法則 ZIPFの法則は単に意味します。大きな自然言語のコーパスでは、最も頻繁に発生する単語は、2番目の頻繁な単語のほぼ2倍の頻度で表示されます。 例を見てみましょう。アメリカ英語の茶色のコーパスを見ると、最も頻繁な言葉は「thであることに気付くでしょう。

HTMLを解析するために美しいスープを使用するにはどうすればよいですか?HTMLを解析するために美しいスープを使用するにはどうすればよいですか?Mar 10, 2025 pm 06:54 PM

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

Pythonでの画像フィルタリングPythonでの画像フィルタリングMar 03, 2025 am 09:44 AM

ノイズの多い画像を扱うことは、特に携帯電話や低解像度のカメラの写真でよくある問題です。 このチュートリアルでは、OpenCVを使用してPythonの画像フィルタリング手法を調査して、この問題に取り組みます。 画像フィルタリング:強力なツール 画像フィルター

Pythonを使用してPDFドキュメントの操作方法Pythonを使用してPDFドキュメントの操作方法Mar 02, 2025 am 09:54 AM

PDFファイルは、クロスプラットフォームの互換性に人気があり、オペレーティングシステム、読み取りデバイス、ソフトウェア間でコンテンツとレイアウトが一貫しています。ただし、Python Plansing Plain Text Filesとは異なり、PDFファイルは、より複雑な構造を持つバイナリファイルであり、フォント、色、画像などの要素を含んでいます。 幸いなことに、Pythonの外部モジュールでPDFファイルを処理することは難しくありません。この記事では、PYPDF2モジュールを使用して、PDFファイルを開き、ページを印刷し、テキストを抽出する方法を示します。 PDFファイルの作成と編集については、私からの別のチュートリアルを参照してください。 準備 コアは、外部モジュールPYPDF2を使用することにあります。まず、PIPを使用してインストールします。 ピップはpです

DjangoアプリケーションでRedisを使用してキャッシュする方法DjangoアプリケーションでRedisを使用してキャッシュする方法Mar 02, 2025 am 10:10 AM

このチュートリアルでは、Redisキャッシングを活用して、特にDjangoフレームワーク内でPythonアプリケーションのパフォーマンスを向上させる方法を示しています。 Redisのインストール、Django構成、およびパフォーマンスの比較をカバーして、Beneを強調します

TensorflowまたはPytorchで深い学習を実行する方法は?TensorflowまたはPytorchで深い学習を実行する方法は?Mar 10, 2025 pm 06:52 PM

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

Pythonで独自のデータ構造を実装する方法Pythonで独自のデータ構造を実装する方法Mar 03, 2025 am 09:28 AM

このチュートリアルでは、Python 3にカスタムパイプラインデータ構造を作成し、機能を強化するためにクラスとオペレーターのオーバーロードを活用していることを示しています。 パイプラインの柔軟性は、一連の機能をデータセットに適用する能力にあります。

Pythonの並列および同時プログラミングの紹介Pythonの並列および同時プログラミングの紹介Mar 03, 2025 am 10:32 AM

データサイエンスと処理のお気に入りであるPythonは、高性能コンピューティングのための豊富なエコシステムを提供します。ただし、Pythonの並列プログラミングは、独自の課題を提示します。このチュートリアルでは、これらの課題を調査し、グローバルな承認に焦点を当てています

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール