目標
このミニプロジェクト/チュートリアルの目標は、最小限のコンポーネントで非常にシンプルな HR モニターとスクロールする ECG ディスプレイを作成することです。
要件:
- Python
- オーディオインターフェース
- 1/4 インチ ケーブル/ギター ケーブル/楽器ケーブル (オーディオ インターフェース経由でコンピューターに接続するだけです)
クイック背景
心臓の筋肉は電気信号を生成します。それらの信号の一部は皮膚の表面で検出できます。
表面電極を使用してこれらの信号を拾うことができます。問題は、皮膚上の電気信号はこれだけではないということです。ありがたいことに、私たちが確認したい信号のほとんどは 1 ~ 40Hz 付近に限定されています。
プロセス
電極として機能する 1/4 インチ ケーブルを取り出し、心臓付近の皮膚に差し込みます。次に、USB オーディオ インターフェイスを使用してアナログ信号を増幅し、デジタルに変換します。最後にPythonでフィルタリングして表示します。
ステップ
ステップ 1: 1/4 インチ ケーブルには、スリーブと先端の 2 つの部分があります。両方の部分が皮膚に接触する必要があります。スリーブを手で持ち、先端に押し当てるだけです。胸部の左側/胸郭の上部 (ケーブルによってはさらに多くのチャンネルがある場合がありますが、すべてのチャンネルが接続されていることを確認してから開始してください)。
ステップ 2: 以下のコードを実行します。 input_device_index 行がオーディオ インターフェイスを指していることを必ず確認してください。私たちが行っていることは、受信オーディオのチャンクを取得し、fft を使用して周波数ドメインに変換し、すべての不要な周波数を 0 に設定してから、時間ドメインに変換し直すことです。次に、心拍数を計算するためのピークを見つけて、スクロールする方法でグラフを作成します。
import numpy as np import pyaudio as pa import struct import matplotlib.pyplot as plt from scipy.signal import decimate, find_peaks CHUNK = 4410 #.1 second FORMAT = pa.paInt16 CHANNELS = 1 RATE = 44100 # in Hz fstep = RATE/CHUNK p = pa.PyAudio() values = [] dsf=44 #down sample factor rds=RATE/dsf #down sampled rate stream = p.open( format = FORMAT, channels = CHANNELS, rate = RATE, input_device_index=3, #adjust based on input input=True, frames_per_buffer=CHUNK ) #set up graph fig,ax = plt.subplots(1) x = np.arange(0,2*CHUNK,2) line, = ax.plot(x, np.random.rand(CHUNK)) ax.set_ylim(-100,100) ax.set_xlim(0,2500) text = ax.text(0.05, 0.95, str(0), transform=ax.transAxes, fontsize=14, verticalalignment='top') fig.show() def getFiltered(x,hp=1,lp=41): #this sets the unneeded freqs to 0 fft=np.fft.fft(x) hptrim=len(fft)/RATE*hp lptrim=len(fft)/RATE*lp fft[int(lptrim):-int(lptrim)]=0 fft[0:int(hptrim)]=0 return np.real(np.fft.ifft(fft)) def getHR(x): pdis = int(0.6 * rds) #minimum distance between peaks. stops rapid triggering. also caps max hr, so adjust peaks, _ = find_peaks(x, distance=pdis, height=0.1) intervals = np.diff(peaks)/rds # in seconds hr = 60 / intervals # in BPM return peaks,round(np.mean(hr),0) #peaks,avg hr while 1: data = stream.read(CHUNK) dataInt = struct.unpack(str(CHUNK) + 'h', data) filtered=getFiltered(dataInt) #filter (working with full chunk) dsed=decimate(filtered, 44) #down sample (turns chunk into ds chunk) values=np.concatenate((values,dsed)) #puts the chunks into an array peaks,hr = getHR(values*-1) # gets the peaks and determins avg HR. text.set_text(str(hr)) line.set_xdata(np.arange(len(values))) line.set_ydata(values*-10) #the negative is bc it comes in upside down with my set up. the *10 is just for fun ax.set_xlim(max(0,len(values)-2500),len(values)) #keep the graph scrolling vlines = ax.vlines(peaks,ymin=-100,ymax=100,colors='red', linestyles='dashed') # pop some lines at the peaks fig.canvas.draw() fig.canvas.flush_events() vlines.remove() if len(values)>10000: #keeps the array managably sized, and graph scrolling pretty values=values[5000:] #5 seconds @ ~1000 sr.
メモ
ケーブルを動かさないでください。正確な心拍数を取得するには、移動後数秒待つ必要がある場合があります。ガーミン ウォッチと照合して確認したところ、一貫して同様の値が返されました。
出力
免責事項
技術的には
あなたの体を回路の一部にしていることを覚えておいてください。ケーブルは、壁の電源コンセントに接続されているコンピュータに接続されているインターフェイスに接続されています...これはご自身の責任で試してください。私は専門家ではありません。ただいろいろなものをいじって楽しむのが好きなので、共有したいと思っています。
次のステップ
この方法は、ECG 信号のさまざまな部分をすべて明確に表示するにはあまりうまく機能しません。電極はかなり擦り傷があり、最低限のフィルタリングを行いました。
ここから、ソフトウェア側をさらに深く掘り下げて追加のフィルターを試したり、実際の回路を作成して実際の電極を使用したりできます。この種の電極の袋はアマゾンでかなり安いです (接着剤が面倒なので注意してください)。回路については、いくつかの異なる構成を試しましたが、私にとって最も簡単で最もうまく機能したのは、JFET オペアンプを使用した単純な計装アンプ回路でした (ブレッドボード上に組み立てられました)。 3 つの電極。どこに配置するかは図を参照してください。 ADC にオーディオ インターフェイスを使用する場合、ここのコードは 3 電極ブレッドボードのセットアップで動作するはずです (ゲインの調整が必要な場合があります)
なぜ
このミニプロジェクトのインスピレーションは、ギター ケーブルを持ちながら DAW の EQ プラグインをいじっているときに生まれました。
以上がシンプルなDIY HRモニターECGディスプレイの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

PythonまたはCの選択は、プロジェクトの要件に依存します。1)迅速な開発、データ処理、およびプロトタイプ設計が必要な場合は、Pythonを選択します。 2)高性能、低レイテンシ、および緊密なハードウェアコントロールが必要な場合は、Cを選択します。

毎日2時間のPython学習を投資することで、プログラミングスキルを効果的に改善できます。 1.新しい知識を学ぶ:ドキュメントを読むか、チュートリアルを見る。 2。練習:コードと完全な演習を書きます。 3。レビュー:学んだコンテンツを統合します。 4。プロジェクトの実践:実際のプロジェクトで学んだことを適用します。このような構造化された学習計画は、Pythonを体系的にマスターし、キャリア目標を達成するのに役立ちます。

2時間以内にPythonを効率的に学習する方法は次のとおりです。1。基本的な知識を確認し、Pythonのインストールと基本的な構文に精通していることを確認します。 2。変数、リスト、関数など、Pythonのコア概念を理解します。 3.例を使用して、基本的および高度な使用をマスターします。 4.一般的なエラーとデバッグテクニックを学習します。 5.リストの概念を使用したり、PEP8スタイルガイドに従ったりするなど、パフォーマンスの最適化とベストプラクティスを適用します。

Pythonは初心者やデータサイエンスに適しており、Cはシステムプログラミングとゲーム開発に適しています。 1. Pythonはシンプルで使いやすく、データサイエンスやWeb開発に適しています。 2.Cは、ゲーム開発とシステムプログラミングに適した、高性能と制御を提供します。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

Pythonはデータサイエンスと迅速な発展により適していますが、Cは高性能およびシステムプログラミングにより適しています。 1. Python構文は簡潔で学習しやすく、データ処理と科学的コンピューティングに適しています。 2.Cには複雑な構文がありますが、優れたパフォーマンスがあり、ゲーム開発とシステムプログラミングでよく使用されます。

Pythonを学ぶために1日2時間投資することは可能です。 1.新しい知識を学ぶ:リストや辞書など、1時間で新しい概念を学びます。 2。練習と練習:1時間を使用して、小さなプログラムを書くなどのプログラミング演習を実行します。合理的な計画と忍耐力を通じて、Pythonのコアコンセプトを短時間で習得できます。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

SublimeText3 中国語版
中国語版、とても使いやすい

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)
