文字列の問題
Python を使用して JDBC (または ODBC) で IRIS データベースにアクセスしています。 データを pandas データフレームにフェッチして、データを操作し、そこからグラフを作成したいと考えています。 JDBC の使用中に文字列処理で問題が発生しました。この投稿は、他の誰かが同じ問題を抱えている場合に役立つものです。 または、これを解決するより簡単な方法がある場合は、コメントで知らせてください!
私は OSX を使用しているので、私の問題がどれほど特殊なものであるかわかりません。私は Jupyter Notebook を使用していますが、他の Python プログラムまたはフレームワークを使用した場合でも、コードは通常同じです。
JDBCの問題
データベースからデータをフェッチすると、列の説明 と 任意の文字列データ がデータ型 java.lang.String として返されます。文字列データ data を出力すると、予想される "paintherear" ではなく "(p,a,i,n,i,n,t,h,e,r,e,a,r)" のようになります。
これはおそらく、JDBC を使用してフェッチされるときに、データ型 java.lang.String の文字列が反復可能または配列として渡されるためです。 これは、使用している Python-Java ブリッジ (JayDeBeApi、JDBC など) が単一ステップで java.lang.String を Python str に自動的に変換しない場合に発生する可能性があります。
これとは対照的に、Python の str 文字列表現では、文字列全体が 1 つの単位として扱われます。 Python が通常の str を (ODBC 経由などで) 取得する場合、個々の文字に分割されません。
JDBC ソリューション
この問題を解決するには、java.lang.String が Python の str 型に正しく変換されていることを確認する必要があります。 フェッチされたデータを処理するときにこの変換を明示的に処理できるため、データは反復可能または文字のリストとして解釈されません。
この文字列操作を行う方法はたくさんあります。これが私がやったことです。
import pandas as pd import pyodbc import jaydebeapi import jpype def my_function(jdbc_used) # Some other code to create the connection goes here cursor.execute(query_string) if jdbc_used: # Fetch the results, convert java.lang.String in the data to Python str # (java.lang.String is returned "(p,a,i,n,i,n,t,h,e,r,e,a,r)" Convert to str type "painintherear" results = [] for row in cursor.fetchall(): converted_row = [str(item) if isinstance(item, jpype.java.lang.String) else item for item in row] results.append(converted_row) # Get the column names and ensure they are Python strings column_names = [str(col[0]) for col in cursor.description] # Create the dataframe df = pd.DataFrame.from_records(results, columns=column_names) # Check the results print(df.head().to_string()) else: # I was also testing ODBC # For very large result sets get results in chunks using cursor.fetchmany(). or fetchall() results = cursor.fetchall() # Get the column names column_names = [column[0] for column in cursor.description] # Create the dataframe df = pd.DataFrame.from_records(results, columns=column_names) # Do stuff with your dataframe
ODBC の問題
ODBC 接続を使用すると、文字列が返されないか、NA になります。
Unicode データ (さまざまな言語の名前など) を含むデータベースに接続している場合、またはアプリケーションで非 ASCII 文字を保存または取得する必要がある場合は、データがデータ間で受け渡されるときに正しくエンコードされたままであることを確認する必要があります。データベースと Python アプリケーション。
ODBC ソリューション
このコードは、データベースへのデータの送信および取得時に、文字列データが UTF-8 を使用してエンコードおよびデコードされることを保証します。 これは、非 ASCII 文字を扱う場合、または Unicode データとの互換性を確保する場合に特に重要です。
def create_connection(connection_string, password): connection = None try: # print(f"Connecting to {connection_string}") connection = pyodbc.connect(connection_string + ";PWD=" + password) # Ensure strings are read correctly connection.setdecoding(pyodbc.SQL_CHAR, encoding="utf8") connection.setdecoding(pyodbc.SQL_WCHAR, encoding="utf8") connection.setencoding(encoding="utf8") except pyodbc.Error as e: print(f"The error '{e}' occurred") return connection
connection.setdecoding(pyodbc.SQL_CHAR, encoding="utf8")
SQL_CHAR 型 (通常は固定長の文字フィールド) をフェッチするときに、データベースから文字データをデコードする方法を pyodbc に指示します。
connection.setdecoding(pyodbc.SQL_WCHAR, encoding="utf8")
SQL_WCHAR、ワイド文字型 (つまり、SQL Server の NVARCHAR や NCHAR などの Unicode 文字列) のデコードを設定します。
connection.setencoding(encoding="utf8")
Python からデータベースに送信される文字列または文字データが UTF-8 を使用してエンコードされるようにします。
つまり、Python はデータベースと通信するときに、その内部 str 型 (Unicode) を UTF-8 バイトに変換します。
すべてをまとめると
JDBCのインストール
JAVA をインストール - dmg を使用します
https://www.oracle.com/middleeast/java/technologies/downloads/#jdk23-mac
シェルを更新してデフォルトのバージョンを設定します
$ /usr/libexec/java_home -V Matching Java Virtual Machines (2): 23 (arm64) "Oracle Corporation" - "Java SE 23" /Library/Java/JavaVirtualMachines/jdk-23.jdk/Contents/Home 1.8.421.09 (arm64) "Oracle Corporation" - "Java" /Library/Internet Plug-Ins/JavaAppletPlugin.plugin/Contents/Home /Library/Java/JavaVirtualMachines/jdk-23.jdk/Contents/Home $ echo $SHELL /opt/homebrew/bin/bash $ vi ~/.bash_profile
JAVA_HOME をパスに追加します
export JAVA_HOME=$(/usr/libexec/java_home -v 23) export PATH=$JAVA_HOME/bin:$PATH
JDBC ドライバーを入手します
https://intersystems-community.github.io/iris-driver-distribution/
jar ファイルをどこかに置きます...私は $HOME に置きました
$ ls $HOME/*.jar /Users/myname/intersystems-jdbc-3.8.4.jar
サンプルコード
ODBC が設定されていることを前提としています (別の日の例として、犬が私のメモを食べてしまいました...)。
注: これは私の実際のコードのハックです。変数名に注意してください。
import os import datetime from datetime import date, time, datetime, timedelta import pandas as pd import pyodbc import jaydebeapi import jpype def jdbc_create_connection(jdbc_url, jdbc_username, jdbc_password): # Path to JDBC driver jdbc_driver_path = '/Users/yourname/intersystems-jdbc-3.8.4.jar' # Ensure JAVA_HOME is set os.environ['JAVA_HOME']='/Library/Java/JavaVirtualMachines/jdk-23.jdk/Contents/Home' os.environ['CLASSPATH'] = jdbc_driver_path # Start the JVM (if not already running) if not jpype.isJVMStarted(): jpype.startJVM(jpype.getDefaultJVMPath(), classpath=[jdbc_driver_path]) # Connect to the database connection = None try: connection = jaydebeapi.connect("com.intersystems.jdbc.IRISDriver", jdbc_url, [jdbc_username, jdbc_password], jdbc_driver_path) print("Connection successful") except Exception as e: print(f"An error occurred: {e}") return connection def odbc_create_connection(connection_string): connection = None try: # print(f"Connecting to {connection_string}") connection = pyodbc.connect(connection_string) # Ensure strings are read correctly connection.setdecoding(pyodbc.SQL_CHAR, encoding="utf8") connection.setdecoding(pyodbc.SQL_WCHAR, encoding="utf8") connection.setencoding(encoding="utf8") except pyodbc.Error as e: print(f"The error '{e}' occurred") return connection # Parameters odbc_driver = "InterSystems ODBC" odbc_host = "your_host" odbc_port = "51773" odbc_namespace = "your_namespace" odbc_username = "username" odbc_password = "password" jdbc_host = "your_host" jdbc_port = "51773" jdbc_namespace = "your_namespace" jdbc_username = "username" jdbc_password = "password" # Create connection and create charts jdbc_used = True if jdbc_used: print("Using JDBC") jdbc_url = f"jdbc:IRIS://{jdbc_host}:{jdbc_port}/{jdbc_namespace}?useUnicode=true&characterEncoding=UTF-8" connection = jdbc_create_connection(jdbc_url, jdbc_username, jdbc_password) else: print("Using ODBC") connection_string = f"Driver={odbc_driver};Host={odbc_host};Port={odbc_port};Database={odbc_namespace};UID={odbc_username};PWD={odbc_password}" connection = odbc_create_connection(connection_string) if connection is None: print("Unable to connect to IRIS") exit() cursor = connection.cursor() site = "SAMPLE" table_name = "your.TableNAME" desired_columns = [ "RunDate", "ActiveUsersCount", "EpisodeCountEmergency", "EpisodeCountInpatient", "EpisodeCountOutpatient", "EpisodeCountTotal", "AppointmentCount", "PrintCountTotal", "site", ] # Construct the column selection part of the query column_selection = ", ".join(desired_columns) query_string = f"SELECT {column_selection} FROM {table_name} WHERE Site = '{site}'" print(query_string) cursor.execute(query_string) if jdbc_used: # Fetch the results results = [] for row in cursor.fetchall(): converted_row = [str(item) if isinstance(item, jpype.java.lang.String) else item for item in row] results.append(converted_row) # Get the column names and ensure they are Python strings (java.lang.String is returned "(p,a,i,n,i,n,t,h,e,a,r,s,e)" column_names = [str(col[0]) for col in cursor.description] # Create the dataframe df = pd.DataFrame.from_records(results, columns=column_names) print(df.head().to_string()) else: # For very large result sets get results in chunks using cursor.fetchmany(). or fetchall() results = cursor.fetchall() # Get the column names column_names = [column[0] for column in cursor.description] # Create the dataframe df = pd.DataFrame.from_records(results, columns=column_names) print(df.head().to_string()) # # Build charts for a site # cf.build_7_day_rolling_average_chart(site, cursor, jdbc_used) cursor.close() connection.close() # Shutdown the JVM (if you started it) # jpype.shutdownJVM()
以上がPython を使用した ODBC または JDBC による IRIS データベースへのアクセスの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Tomergelistsinpython、あなたはオペレーター、extendmethod、listcomfulting、olitertools.chain、それぞれの特異的advantages:1)operatorissimplebutlessforlargelist;

Python 3では、2つのリストをさまざまな方法で接続できます。1)小さなリストに適したオペレーターを使用しますが、大きなリストには非効率的です。 2)メモリ効率が高い大規模なリストに適した拡張方法を使用しますが、元のリストは変更されます。 3)元のリストを変更せずに、複数のリストをマージするのに適した *オペレーターを使用します。 4)Itertools.chainを使用します。これは、メモリ効率が高い大きなデータセットに適しています。

Join()メソッドを使用することは、Pythonのリストから文字列を接続する最も効率的な方法です。 1)join()メソッドを使用して、効率的で読みやすくなります。 2)サイクルは、大きなリストに演算子を非効率的に使用します。 3)リスト理解とJoin()の組み合わせは、変換が必要なシナリオに適しています。 4)redoce()メソッドは、他のタイプの削減に適していますが、文字列の連結には非効率的です。完全な文は終了します。

pythonexexecutionistheprocessoftransforningpythoncodeintoexecutabletructions.1)interpreterreadSthecode、変換intobytecode、thepythonvirtualmachine(pvm)executes.2)theglobalinterpreeterlock(gil)管理委員会、

Pythonの主な機能には次のものがあります。1。構文は簡潔で理解しやすく、初心者に適しています。 2。動的タイプシステム、開発速度の向上。 3。複数のタスクをサポートするリッチ標準ライブラリ。 4.強力なコミュニティとエコシステム、広範なサポートを提供する。 5。スクリプトと迅速なプロトタイピングに適した解釈。 6.さまざまなプログラミングスタイルに適したマルチパラダイムサポート。

Pythonは解釈された言語ですが、コンパイルプロセスも含まれています。 1)Pythonコードは最初にBytecodeにコンパイルされます。 2)ByteCodeは、Python Virtual Machineによって解釈および実行されます。 3)このハイブリッドメカニズムにより、Pythonは柔軟で効率的になりますが、完全にコンパイルされた言語ほど高速ではありません。

useaforloopwhenteratingoverasequenceor foraspificnumberoftimes; useawhileloopwhentinuninguntinuntilaConditionismet.forloopsareidealforknownownownownownownoptinuptinuptinuptinuptinutionsituations whileoopsuitsituations withinterminedationations。

pythonloopscanleadtoErrorslikeinfiniteloops、ModifiningListsDuringiteration、Off-Oneerrors、Zero-dexingissues、およびNestededLoopinefficiencies.toavoidhese:1)use'i


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。
