Polars と Pandas: 違いは何ですか?
最近の Python 開発についてよく知っている方は、データを操作するための新しいライブラリである Polars について聞いたことがあるでしょう。 pandas は長い間頼りになるライブラリでしたが、Polars は、特に大きなデータセットの処理に関して話題を呼んでいます。では、Polars にとって何が重要なのでしょうか?パンダとどう違うの?分解してみましょう。
ポラーズとは何ですか?
Polars は、Rust (高速で最新のプログラミング言語) で構築された無料のオープンソース ライブラリです。 Python 開発者がより高速かつ効率的な方法でデータを処理できるように設計されています。これは、パンダが苦労する可能性のある非常に大規模なデータセットを扱うときに威力を発揮するパンダの代替手段と考えてください。
なぜポラーズが作られたのか?
Pandas は何年も前から存在しており、多くの人が今でも愛用しています。しかし、データが大きくなり複雑になるにつれて、パンダにはいくつかの弱点が見え始めました。 Polars の作成者である Ritchie Vink は、これらの問題に気づき、より高速で効率的なものを作成することにしました。パンダの作成者であるウェス・マッキニーでさえ、「パンダについて私が嫌いな10のこと」というタイトルのブログ投稿で、特に大規模なデータセットの場合、パンダには何らかの改善が必要であることを認めました。
そこで、Polars が登場します。Polars は、パンダがビッグデータを処理する際に苦労する 2 つの点である、超高速かつメモリ効率を高めるように設計されています。
主な違い: Polars と Pandas
1.スピード
Polars は本当に速い。実際、いくつかのベンチマークでは、データのフィルタリングやグループ化などの一般的な操作を実行する場合、Polars は pandas よりも最大 5 ~ 10 倍高速 であることが示されています。この速度の違いは、大規模なデータセットを操作する場合に特に顕著です。
2. メモリ使用量
メモリに関しては、Polars の方がはるかに効率的です。パンダに比べて使用するメモリの量は約 5 ~ 10 分の 1です。つまり、メモリの問題が発生することなく、はるかに大規模なデータセットを操作できます。
3. 遅延実行
Polars は 遅延実行 と呼ばれるものを使用します。これは、各操作を作成したときにすぐに実行されないことを意味します。代わりに、一連の操作が記述されるまで待機してから、それらをすべて一度に実行します。これにより、処理が最適化され、より高速に実行されます。一方、Pandas はすべての操作を即座に実行するため、大きなタスクの場合は遅くなる可能性があります。
4. マルチスレッド
Polars は、複数の CPU コアを同時に使用してデータを処理できるため、大きなデータセットの場合はさらに高速になります。 Pandas はほとんどがシングル スレッドです。つまり、一度に 1 つの CPU コアしか使用できないため、特に大規模なデータセットの場合、処理速度が遅くなります。
なぜPolarsはそんなに速いのでしょうか?
Polars が高速である理由はいくつかあります:
- 速度と安全性で知られるプログラミング言語 Rust で組み込まれており、非常に効率的です。
- これは、メモリにデータを保存する特別な方法である Apache Arrow を使用しており、さまざまなプログラミング言語間での作業をより簡単かつ迅速に行うことができます。
Rust と Apache Arrow の組み合わせにより、速度とメモリ使用量の点で Polars がパンダよりも優位になります。
パンダの長所と限界
Polars はビッグデータに最適ですが、pandas も依然としてその役割を果たしています。 Pandas は小規模から中規模のデータセットで非常にうまく機能し、非常に長い間存在しているため、大量の機能と巨大なコミュニティがあります。したがって、巨大なデータセットを扱っていない場合でも、パンダが最良の選択肢になる可能性があります。
ただし、データセットが大きくなるにつれて、pandas はより多くのメモリを使用して速度が低下する傾向があるため、そのような状況では Polars の方が良い選択肢となります。
Polars をいつ使用する必要がありますか?
次の場合は、Polars の使用を検討してください。
- 大規模なデータセット (数百万行または数十億行) を操作しています。
- タスクを迅速に完了するには、スピードとパフォーマンスが必要です。
- メモリ制限があるため、RAM の使用量を節約する必要があります。
結論
Polar と panda にはどちらもそれぞれの長所があります。小規模から中規模のデータセットを扱う場合、pandas は依然として優れたツールです。しかし、大規模なデータセットを扱っていて、より高速でメモリ効率の高いものが必要な場合は、Polars は間違いなく試してみる価値があります。 Rust と Apache Arrow のおかげでパフォーマンスが向上し、データ集約型のタスクに最適なオプションとなっています。
Python が進化し続けるにつれて、Polars がビッグデータを処理するための新しい goto ツールになる可能性があります。
コーディングを楽しんでいますか? ?
以上がPolars 対 Pandas Python におけるデータフレームの新時代?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonリストスライスの基本的な構文はリストです[start:stop:step]。 1.STARTは最初の要素インデックス、2。ストップは除外された最初の要素インデックスであり、3.ステップは要素間のステップサイズを決定します。スライスは、データを抽出するためだけでなく、リストを変更および反転させるためにも使用されます。

ListSoutPerformArraysIn:1)ダイナミシジョンアンドフレーケンティオン/削除、2)ストーリングヘテロゼンダタ、および3)メモリ効率の装飾、ButmayhaveslightPerformancostsinceNASOPERATIONS。

toconvertapythonarraytoalist、usetheList()constructororageneratorexpression.1)importhearraymoduleandcreateanarray.2)useList(arr)または[xforxinarr] toconvertoalistは、largedatatessを変えることを伴うものです。

choosearraysoverlistsinperbetterperformance andmemoryeficiencyspecificscenarios.1)largeNumericaldatasets:Araysreducememoryusage.2)パフォーマンス - クリティカル操作:ArraysOfferSpeedBoostsfortsfortsclikeappendedoring.3)タイプリー:Arrayesenforc

Pythonでは、ループに使用し、列挙し、包括的なリストを通過することができます。 Javaでは、従来のループを使用し、ループを強化してアレイを通過することができます。 1。Pythonリストトラバーサル方法は、ループ、列挙、およびリスト理解のためのものです。 2。Javaアレイトラバーサル法には、従来のループとループ用の強化が含まれます。

この記事では、バージョン3.10で導入されたPythonの新しい「マッチ」ステートメントについて説明します。これは、他の言語のスイッチステートメントに相当するものです。コードの読みやすさを向上させ、従来のif-elif-elよりもパフォーマンスの利点を提供します

Python 3.11の例外グループは、複数の例外を同時に処理することで、同時シナリオと複雑な操作でエラー管理を改善します。

Pythonの関数注釈は、タイプチェック、ドキュメント、およびIDEサポートの関数にメタデータを追加します。それらはコードの読みやすさ、メンテナンスを強化し、API開発、データサイエンス、ライブラリの作成において重要です。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

WebStorm Mac版
便利なJavaScript開発ツール

Dreamweaver Mac版
ビジュアル Web 開発ツール

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ホットトピック









