機械学習 (ML) は、ソフトウェア開発の世界を急速に変革しました。 TensorFlow や PyTorch などのライブラリのおかげで、最近まで Python は ML 分野で主流の言語でした。しかし、TensorFlow.js の登場により、JavaScript 開発者は、使い慣れた構文を使用して、ブラウザーまたは Node.js で直接モデルを構築およびトレーニングし、エキサイティングな機械学習の世界に飛び込むことができるようになりました。
このブログ投稿では、JavaScript を使用して機械学習を始める方法を説明します。 TensorFlow.js を使用して単純なモデルを構築およびトレーニングする例を見ていきます。
TensorFlow.js を使用する理由
TensorFlow.js は、機械学習モデルを完全に JavaScript で定義、トレーニング、実行できるオープンソース ライブラリです。ブラウザーと Node.js の両方で実行できるため、幅広い ML アプリケーションに非常に多用途です。
TensorFlow.js が魅力的な理由をいくつか挙げます:
- リアルタイム トレーニング: ブラウザーでモデルを直接実行でき、リアルタイムの対話性を提供します。
- クロスプラットフォーム: 同じコードをサーバー環境とクライアント環境の両方で実行できます。
- ハードウェア アクセラレーション: GPU アクセラレーションに WebGL を使用し、計算を高速化します。
始め方を見てみましょう!
1. TensorFlow.js のセットアップ
コードに入る前に、TensorFlow.js をインストールする必要があります。 <script> を介してプロジェクトにこれを含めることができます。 tag または npm (環境に応じて)。</script>
ブラウザのセットアップ
ブラウザで TensorFlow.js を使用するには、次の <script> をインクルードするだけです。 HTML ファイル内のタグ:<br> </script>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></script>
Node.jsのセットアップ
Node.js 環境の場合は、npm:
を使用してインストールできます。
npm install @tensorflow/tfjs
2. 単純なニューラル ネットワーク モデルの構築
基本的な線形関数 y = 2x - 1 の出力を予測する単純なニューラル ネットワークを作成しましょう。このモデルの作成とトレーニングには TensorFlow.js を使用します。
ステップ 1: モデルを定義する
まず、1 つの高密度レイヤーを含むシーケンシャル モデル (レイヤーの線形スタック) を定義します。
// Import TensorFlow.js import * as tf from '@tensorflow/tfjs'; // Create a simple sequential model const model = tf.sequential(); // Add a single dense layer with 1 unit (neuron) model.add(tf.layers.dense({units: 1, inputShape: [1]}));
ここでは、1 つの高密度レイヤーを持つモデルを作成しました。この層には 1 つのニューロン (単位: 1) があり、単一の入力特徴 (inputShape: [1]) が必要です。
ステップ 2: モデルをコンパイルする
次に、オプティマイザと損失関数を指定してモデルをコンパイルします。
// Compile the model model.compile({ optimizer: 'sgd', // Stochastic Gradient Descent loss: 'meanSquaredError' // Loss function for regression });
小規模モデルに効果的な確率的勾配降下 (SGD) オプティマイザーを使用します。損失関数 meansSquaredError は、このような回帰タスクに適しています。
ステップ 3: トレーニング データを準備する
ここで、関数 y = 2x - 1 のトレーニング データを作成します。TensorFlow.js では、データはテンソル (多次元配列) に保存されます。トレーニング データを生成する方法は次のとおりです:
// Generate some synthetic data for training const xs = tf.tensor2d([0, 1, 2, 3, 4], [5, 1]); // Inputs (x values) const ys = tf.tensor2d([1, 3, 5, 7, 9], [5, 1]); // Outputs (y values)
この場合、入力値 (0、1、2、3、4) を持つテンソル xs と、y = 2x - 1 を使用して計算された値を持つ対応する出力テンソル ys を作成しました。
ステップ 4: モデルをトレーニングする
これで、データに基づいてモデルをトレーニングできます。
// Train the model model.fit(xs, ys, {epochs: 500}).then(() => { // Once training is complete, use the model to make predictions model.predict(tf.tensor2d([5], [1, 1])).print(); // Output will be close to 2*5 - 1 = 9 });
ここでは、モデルを 500 エポック (トレーニング データの反復) トレーニングします。トレーニング後、モデルを使用して入力値 5 の出力を予測します。これは 9 (y = 2*5 - 1 = 9) に近い値を返すはずです。
3. ブラウザでのモデルの実行
このモデルをブラウザで実行するには、TensorFlow.js ライブラリと JavaScript コードを含む HTML ファイルが必要です。
TensorFlow.js Example <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></script>Simple Neural Network with TensorFlow.js
app.js ファイルには、上記のモデル構築コードとトレーニング コードを含めることができます。
以上がJavaScript での機械学習入門: TensorFlow.js の初心者ガイドの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

PythonとJavaScriptの主な違いは、タイプシステムとアプリケーションシナリオです。 1。Pythonは、科学的コンピューティングとデータ分析に適した動的タイプを使用します。 2。JavaScriptは弱いタイプを採用し、フロントエンドとフルスタックの開発で広く使用されています。この2つは、非同期プログラミングとパフォーマンスの最適化に独自の利点があり、選択する際にプロジェクトの要件に従って決定する必要があります。

PythonまたはJavaScriptを選択するかどうかは、プロジェクトの種類によって異なります。1)データサイエンスおよび自動化タスクのPythonを選択します。 2)フロントエンドとフルスタック開発のためにJavaScriptを選択します。 Pythonは、データ処理と自動化における強力なライブラリに好まれていますが、JavaScriptはWebインタラクションとフルスタック開発の利点に不可欠です。

PythonとJavaScriptにはそれぞれ独自の利点があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1. Pythonは、データサイエンスやバックエンド開発に適した簡潔な構文を備えた学習が簡単ですが、実行速度が遅くなっています。 2。JavaScriptはフロントエンド開発のいたるところにあり、強力な非同期プログラミング機能を備えています。 node.jsはフルスタックの開発に適していますが、構文は複雑でエラーが発生しやすい場合があります。

javascriptisnotbuiltoncorc;それは、解釈されていることを解釈しました。

JavaScriptは、フロントエンドおよびバックエンド開発に使用できます。フロントエンドは、DOM操作を介してユーザーエクスペリエンスを強化し、バックエンドはnode.jsを介してサーバータスクを処理することを処理します。 1.フロントエンドの例:Webページテキストのコンテンツを変更します。 2。バックエンドの例:node.jsサーバーを作成します。

PythonまたはJavaScriptの選択は、キャリア開発、学習曲線、エコシステムに基づいている必要があります。1)キャリア開発:Pythonはデータサイエンスとバックエンド開発に適していますが、JavaScriptはフロントエンドおよびフルスタック開発に適しています。 2)学習曲線:Python構文は簡潔で初心者に適しています。 JavaScriptの構文は柔軟です。 3)エコシステム:Pythonには豊富な科学コンピューティングライブラリがあり、JavaScriptには強力なフロントエンドフレームワークがあります。

JavaScriptフレームワークのパワーは、開発を簡素化し、ユーザーエクスペリエンスとアプリケーションのパフォーマンスを向上させることにあります。フレームワークを選択するときは、次のことを検討してください。1。プロジェクトのサイズと複雑さ、2。チームエクスペリエンス、3。エコシステムとコミュニティサポート。

はじめに私はあなたがそれを奇妙に思うかもしれないことを知っています、JavaScript、C、およびブラウザは正確に何をしなければなりませんか?彼らは無関係であるように見えますが、実際、彼らは現代のウェブ開発において非常に重要な役割を果たしています。今日は、これら3つの間の密接なつながりについて説明します。この記事を通して、JavaScriptがブラウザでどのように実行されるか、ブラウザエンジンでのCの役割、およびそれらが協力してWebページのレンダリングと相互作用を駆動する方法を学びます。私たちは皆、JavaScriptとブラウザの関係を知っています。 JavaScriptは、フロントエンド開発のコア言語です。ブラウザで直接実行され、Webページが鮮明で興味深いものになります。なぜJavascrを疑問に思ったことがありますか


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

メモ帳++7.3.1
使いやすく無料のコードエディター

WebStorm Mac版
便利なJavaScript開発ツール

SublimeText3 中国語版
中国語版、とても使いやすい

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。
