ホームページ  >  記事  >  データベース  >  PostgreSQL と MySQL の包括的な比較

PostgreSQL と MySQL の包括的な比較

DDD
DDDオリジナル
2024-09-12 22:16:31377ブラウズ

A comprehensive comparison of PostgreSQL and MySQL

導入

PostgreSQL と MySQL について簡単に見てみましょう。これらは両方とも、さまざまなアプリケーションにわたって広く使用されている重要なオープンソース リレーショナル データベース管理システムです。

技術アーキテクチャと設計哲学

起源と発展

PostgreSQL は、1986 年にバークレーで行われた POSTGRES プロジェクトに由来します。このプロジェクトは、厳密な学術研究と厳格な SQL 標準を通じてデータベース管理システムを進歩させることを目的としていました。この背景により、PostgreSQL はデータの一貫性に重点を置いた強固な理論的基盤を備えており、複雑なクエリや高度なデータ型に最適です。その設計は、長期的な安定性、拡張性、コミュニティ主導のイノベーションを重視しています。

対照的に、MySQL は 1995 年に Michael Widenius と David Axmark によって作成され、急速に発展するインターネット アプリケーションのニーズを満たす実用性と使いやすさを優先しました。これにより、データベース管理が簡素化され、パフォーマンスが向上し、インターネット ブームの中ですぐに Web 開発者に好まれる選択肢となりました。 MySQL は一貫してパフォーマンスと導入の容易さに焦点を当ててきました。

データベースエンジン

MySQL の注目すべき機能は、複数のデータベース エンジンのサポートであり、ユーザーはニーズに合わせて最適なストレージ方法を選択できます。バージョン 5.5 以降、InnoDB がデフォルトのエンジンとなり、トランザクションと行レベルのロックをサポートして、高い同時実行性とデータの一貫性を実現しています。 MyISAM は、より優れた読み取りパフォーマンスを提供しますが、トランザクションのサポートがないため、読み取り負荷の高いシナリオに適しています。 MySQL は、特定のユースケース向けにメモリやアーカイブなどのエンジンも提供します。

対照的に、PostgreSQL は統合されたコア エンジンを使用し、すべての機能の一貫性と相互運用性を保証します。この設計は、メンテナンスを簡素化しながら、複雑なクエリ、トランザクション管理、および高度なデータ型をサポートします。場合によっては MySQL よりも柔軟性が劣りますが、PostgreSQL の内部柔軟性とスケーラビリティは、パーティショニングやクエリ最適化などの機能によって強化されています。

SQL 構文と機能の比較

比較分析により、配列型のサポート、JSON 処理、トランザクション管理、一時テーブル、ウィンドウ関数、再帰クエリ、データ型の豊富さ、デフォルト値の制約、大文字と小文字の区別などの領域における相違点と類似点が明らかになります。

SQL Syntax/Feature PostgreSQL MySQL Description
Array Types Supported Not directly supported PostgreSQL allows direct definition of array type fields. MySQL simulates arrays using strings or other indirect methods.
JSON Support Powerful More basic PostgreSQL has advanced JSON support with indexing and optimized queries. MySQL’s JSON support has improved in recent versions but remains simpler.
Transaction Handling Fully ACID Default auto-commit PostgreSQL pulls off full ACID compliance by default, ideal for high-consistency scenarios. MySQL defaults to auto-commit for each statement but can be configured for transaction handling.
Temporary Tables Session/Global Scope Session Only PostgreSQL allows both session-level and global temporary tables, while MySQL supports only session-level ones.
Window Functions Supported Supported since later versions PostgreSQL has long supported window functions; MySQL added full support in more recent versions.
CTE (Common Table Expressions) Supported Supported Both support CTE, but advanced usages or performance may vary.
Recursive Queries Supported Supported since version 8.0 PostgreSQL has supported recursive queries for a while, while MySQL started in version 8.0.
Data Types More varied (like ARRAY, HSTORE, GIS types) Basic types are comprehensive PostgreSQL supports more specialized data types, while MySQL has a good set of basic types but not as diverse as PostgreSQL.
Default Value Constraints Supports any expression Has many limitations PostgreSQL allows defaults to be any expression, whereas MySQL’s defaults are usually constants.
Case Sensitivity Configurable Defaults to case-insensitive PostgreSQL can configure case sensitivity at the database or column level, while MySQL defaults to case-insensitive unless using binary collation.

注: 時間の経過とともに、両方のシステムが継続的に更新されるため、特定の機能のサポートとパフォーマンスが変更される場合があります。データベースを選択するときは、最新の公式ドキュメントまたはリリース ノートを参照することをお勧めします。

高度な機能の比較: データ型とトランザクション処理

Feature/Database PostgreSQL MySQL
Advanced Data Types Supports arrays, JSONB, hstore, etc., for complex data structures. Supports JSON (enhanced in newer versions), but doesn't natively support arrays or hstore, needing indirect methods.
Window Functions Early support for window functions, suitable for a variety of complex data analytics scenarios. Added window functions in newer versions, progressively improving functionality but might lag in maturity and community resources.
Transaction Isolation Levels Supports READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ, SERIALIZABLE, fully compliant with SQL standards. Also supports these four isolation levels, but defaults to REPEATABLE READ and implements them via different storage engines (like InnoDB).
MVCC Implementation Strong MVCC mechanism maintains multiple versions for each row, allowing for lock-free reads to enhance concurrency. InnoDB uses MVCC via Undo Logs to maintain transaction views, optimizing read and write concurrency with its own locking strategies.
Locking Mechanism Supports row-level locking combined with multi-version concurrency control, reducing lock contention and improving concurrency efficiency. InnoDB supports row-level locking; MyISAM and other engines use table locks. Row-level locking improves concurrency but can be influenced by locking strategies and transaction designs.

データ型と機能的特徴

  • 高度なデータ型: PostgreSQL は、配列、JSONB、hstore などの豊富なオプションを提供し、複雑なデータ処理に適しています。
  • ウィンドウ関数と分析クエリ: PostgreSQL は以前からこれらをサポートしていましたが、MySQL は新しいリリースで追加しました。
  • トランザクション処理と同時実行制御: 分離レベル、MVCC 実装、ロック メカニズムを比較すると、重要な違いがわかります。

パフォーマンスとスケーラビリティの比較

Feature/Database PostgreSQL MySQL
Benchmarking and Workload - Excels in complex queries and joins, thanks to rich indexing types and an optimizer.
- Good balance for write-heavy and mixed workloads.
- Performs excellently in read-heavy scenarios, especially simple SELECT queries.
- InnoDB engine optimizes read speed and handles concurrency well.
Scalability Strategy - Supports partitioning for large tables to optimize query performance.
- Parallel querying enhances large data processing capabilities.
- Connection pooling management boosts concurrent processing.
- Achieves scalability via third-party tools (like PgPool-II, Patroni) for high availability and extensibility.
- Sharding is common for horizontally scaling, ideal for large data distribution.
- Offers replication (master-slave), group replication for redundancy and separating reads and writes.
Horizontal Scalability - Native support is limited but can implement complex distributed deployments with third-party tools.
- Citus extension enables real distributed SQL processing.
- Has more mature sharding solutions and clustering technologies, making horizontal scalability more flexible, especially for large internet applications.

パフォーマンスとスケーラビリティの詳細な比較

Feature/Database PostgreSQL MySQL
Benchmarking and Workload - With a powerful query optimizer and various indexing types, excels in complex query handling and analysis.
- Balanced reading and writing, suitable for applications needing high-performance writing and complex analysis.
- Excels in read-heavy contexts, particularly in simple SELECT queries, suited for web browsing and content distribution scenarios.
- Optimizes read performance through read-write separation and caching strategies.
- Specializes in read-heavy operations for simple SELECT queries, perfect for content management systems and e-commerce platforms, ensuring optimized reading performance.
- MySQL supports InnoDB optimizations for read speed and concurrency handling.
Scalability Solutions - Partitions support range, list, hash, and more, boosting large table query efficiency.
- Automatically leverages multi-core CPUs for parallel querying, enhancing data retrieval speed.
- 内置和第三方连接池管理优化资源使用和响应时间。
- Using extensions like Citus for distributed processing.
- Sharding, either manual or automated, disperses storage and processes large datasets to improve read and write performance.
- Replication mechanisms (master-slave, group) enhance data availability and reading scalability.
- InnoDB Cluster provides integrated high availability and scalability solutions that simplify cluster management.

パフォーマンスとスケーラビリティ

  • ベンチマークとワークロード: さまざまなワークロードの下で両方のシステムのパフォーマンスを分析し、読み取り負荷の高いコンテキストにおける MySQL の優位性と、複雑なクエリにおける PostgreSQL の効率について言及します。
  • スケーラビリティ: 水平スケーラビリティ機能について説明します。MySQL のシャーディング戦略と PostgreSQL の接続プーリング、パーティショニング、並列クエリ機能など。

セキュリティとコンプライアンスの比較

Feature/Database PostgreSQL MySQL
User Permission Management - Fine-grained permission control with role and privilege inheritance, making it easier to manage complex permission structures.
- Supports row-level security (RLS) for custom access control rules.
- Provides a detailed user and permissions management system, with controls down to the database and table level.
- Doesn't natively support row-level security but can implement it through application logic.
Encryption Features - Supports SSL/TLS encrypted connections to secure data transmission.
- Has field-level encryption plugins to enhance security when data is at rest.
- Transparent Data Encryption (TDE) options can be implemented through third-party extensions.
- Built-in SSL/TLS support protects network communications.
- InnoDB storage engine supports table space encryption to secure data files.
- MySQL Enterprise Edition offers more advanced encryption options.
Compliance Certification - Complies with multiple security standards, including FIPS 140-2 and Common Criteria.
- Supports data protection regulations like GDPR, but specific compliance measures need to be tailored to the environment.
- Holds several international security certifications like PCI DSS and ISO 27001.
- Supports SSL/TLS and TDE, aiding in compliance with regulations like HIPAA and GDPR.
- MySQL Enterprise Edition provides enhanced auditing and security functions to strengthen compliance.

セキュリティとコンプライアンス

  • ユーザー権限管理: PostgreSQL は、きめ細かい制御と行レベルのセキュリティで優れています。 MySQL はアプリケーション層のセキュリティ適応に重点を置いています。
  • 暗号化機能: どちらも SSL/TLS をサポートしていますが、PostgreSQL には拡張機能による TDE オプションとフィールドレベル暗号化の高度な制御が含まれています。
  • コンプライアンス認定: どちらのデータベースもさまざまなセキュリティ標準に準拠していますが、PostgreSQL はより幅広い認定を受けており、MySQL のエンタープライズ バージョンはコンプライアンス機能を強化しています。

アプリケーションシナリオと選択の推奨事項

Database Suitable Scenarios
PostgreSQL - Data analytics and business intelligence: Strong capabilities for complex queries, window functions, and geospatial data processing.
- High compliance industries like finance and healthcare: Robust security and compliance features.
- Complex application development: Supports advanced data types and multi-version concurrency, ideal for transaction-heavy applications.
MySQL - Web applications and startups: Lightweight, easy to deploy, rich community resources, quick development cycles.
- Read-heavy services: Such as content management systems and e-commerce platforms with optimized read performance.
- Cloud-native environments: Deep integration with various cloud providers, suited for quickly scalable internet services.

意思決定の枠組み

Decision Factor Considerations PostgreSQL Tendency MySQL Tendency
Data Scale and Complexity Volume of data, query complexity Large datasets, complex queries, multi-dimensional analysis Small to medium datasets, simple queries
Transaction Processing Needs Complexity and consistency of transactions High-concurrency transactions, strict ACID requirements Simple transaction handling, read/write separation scenarios
Budget and Costs Software licensing, operational costs Open-source and free, but may require more professional support Open-source and low cloud service costs
Team Familiarity and Skills Technical stack match, learning curve Requires strong SQL skills, suited for experienced teams Friendlier for beginners, lower learning curve

考慮事項

データベースを選択するとき、すべてに当てはまる万能のデータベースはありません。代わりに、自分のニーズに最も適したものに焦点を当ててください。これらの要素を比較検討しながら、最終的な決定を下す前に、小規模な概念実証 (POC) を実行して、特定のワークロード下でデータベースのパフォーマンスをテストすることを検討してください。さらに、どちらのデータベース システムも継続的に改善され、新機能が導入されているため、情報に基づいた選択を行うためには、最新の開発情報を常に最新の状態に保つことが不可欠です。

以上がPostgreSQL と MySQL の包括的な比較の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明:
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。