組織がデータ主導の意思決定にますます依存するようになるにつれて、データ品質が最も重要になってきています。データの整合性を確保するには、データの可用性だけでなく、その正確性、一貫性、信頼性も重要です。これを達成するために、さまざまなツールが開発されていますが、その中でも Soda と Great Expectations は、データ品質保証のための一般的なソリューションとして際立っています。この記事では、両方のツールを比較し、どちらがニーズに最適かを判断できるように、それぞれの長所と短所を強調します。
データ品質保証の重要性
比較に入る前に、データ品質保証がなぜ重要なのかを簡単に確認しましょう。低品質のデータは次のような問題を引き起こす可能性があります。
- 間違ったビジネス上の意思決定: 正確なデータがなければ、ビジネス リーダーは誤った仮定や結論を下す可能性があります。
- 運用の非効率: 信頼性の低いデータにより、冗長性が生じたり、ワークフローが遅くなったり、タスクの繰り返しが必要になったりする可能性があります。
- コンプライアンス リスク: 多くの業界は、データの品質と整合性に関する厳格な規制を遵守する必要があります。遵守しない場合は、法的影響が生じる可能性があります。
これらの潜在的な影響を考慮すると、データ パイプライン全体でデータ品質を確保することが不可欠です。
ソーダ: シンプルさを重視したモニタリング
データ監視プラットフォームである Soda は、特にデータ エンジニアやアナリストにとってのシンプルさと使いやすさに重点を置いています。データの不整合や異常を監視するためのすぐに使えるソリューションを提供し、何かがおかしいと思われる場合には確実に通知されます。
ソーダの主な特徴
直感的な UI とコマンドライン インターフェイス: Soda は、非技術ユーザー向けにわかりやすい UI を提供し、コードファースト環境での作業を希望するユーザー向けに CLI を提供します。
チェックとモニタリング: 欠損値、重複、スキーマ違反などのさまざまな潜在的な問題についてデータを監視する「チェック」を定義します。これらのチェックが失敗すると、Soda は自動的にアラートをトリガーします。
アラートと通知: Soda は人気のメッセージング サービス (Slack、Microsoft Teams など) と統合されており、リアルタイムでアラートを受け取ることができます。
シンプルな構成: 構成は YAML ベースであるため、カスタム チェックのセットアップが簡単です。
ソーダを選ぶとき
- シンプルさ: Soda は、深い技術的専門知識がなくてもすぐに始めたいチームに最適です。
- リアルタイム監視: 継続的な監視とアラートがワークフローにとって重要な場合、Soda の統合により最新の状態を維持できます。
- 小規模から中規模のパイプライン: Soda は、比較的小規模なデータセット、または迅速に実装できるツールが必要な場合に適しています。
大きな期待: 高度なデータ検証のための柔軟なフレームワーク
Great Expectations は、データの検証と文書化のために特別に設計されたオープンソース フレームワークです。柔軟で高度な構成が可能なため、上級ユーザーやデータ品質プロセスをより詳細に制御する必要があるユーザーにとって、より良い選択肢となります。
Great Expectations の主な特徴
カスタマイズ可能な期待値: Great Expectations を使用すると、データが満たさなければならない一連の「期待値」、つまりルールを定義できます。これらの期待は、必要に応じて単純または複雑にすることができ、基本的な null チェックから詳細な統計的検証まですべてをカバーします。
自動データ ドキュメント: 傑出した機能の 1 つは、監査証跡とコンプライアンスに役立つデータ ドキュメントを自動的に生成する Great Expectations の機能です。
データ プロファイリング: Great Expectations はデータセットをプロファイリングして、データの分布、パターン、品質を長期的に理解するのに役立ちます。
データ パイプラインとの統合: このフレームワークは、Apache Airflow、dbt、Prefect などの多くの最新のデータ プラットフォームとスムーズに統合します。
高度な構成可能: 上級ユーザーは、Python コードを使用して非常に詳細なレベルでテストと検証を構成できる機能を高く評価します。
위대한 기대를 선택해야 할 때
- 복잡한 파이프라인: 크고 복잡한 데이터 파이프라인을 모니터링해야 하는 경우 Great Expectations의 유연성과 구성 가능성이 확실한 선택입니다.
- 세부 문서: 규정 준수 또는 감사를 위해 세부 문서가 필요한 팀의 경우 Great Expectations는 검증할 때마다 자동으로 보고서를 생성할 수 있습니다.
- 고급 사용자 정의: 검증 논리에 대한 높은 수준의 제어가 필요한 경우 Great Expectations는 Python을 사용하여 심층적인 사용자 정의를 허용합니다.
일대일 비교 : 소다 대 위대한 유산
Feature | Soda | Great Expectations |
---|---|---|
Ease of Use | Simple to set up and use | Requires more technical expertise |
Configuration | YAML-based | Python-based, highly customizable |
Real-time Monitoring | Yes, with alerting integrations | No real-time alerting out of the box |
Documentation | Basic | Automated and detailed documentation |
Integration | Integrates with Slack, Teams, etc. | Integrates with Airflow, dbt, Prefect |
Customization | Limited | Highly customizable with Python |
구성
실시간 모니터링
- 문서
실시간 모니터링 기능과 기본 점검 기능을 갖춘 간단하고 구현하기 쉬운 도구가 필요하다면
소다- 를 선택하세요.
- 프로젝트에 고급 데이터 검증, 자세한 문서화, 높은 수준의 사용자 정의가 필요한 경우
- 큰 기대 를 선택하세요.
以上がデータの整合性の確保:ソーダの比較と品質保証への大きな期待の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このチュートリアルでは、Pythonを使用してZIPFの法則の統計的概念を処理する方法を示し、法律の処理時にPythonの読み取りおよび並べ替えの効率性を示します。 ZIPF分布という用語が何を意味するのか疑問に思うかもしれません。この用語を理解するには、まずZIPFの法律を定義する必要があります。心配しないでください、私は指示を簡素化しようとします。 ZIPFの法則 ZIPFの法則は単に意味します。大きな自然言語のコーパスでは、最も頻繁に発生する単語は、2番目の頻繁な単語のほぼ2倍の頻度で表示されます。 例を見てみましょう。アメリカ英語の茶色のコーパスを見ると、最も頻繁な言葉は「thであることに気付くでしょう。

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

ノイズの多い画像を扱うことは、特に携帯電話や低解像度のカメラの写真でよくある問題です。 このチュートリアルでは、OpenCVを使用してPythonの画像フィルタリング手法を調査して、この問題に取り組みます。 画像フィルタリング:強力なツール 画像フィルター

PDFファイルは、クロスプラットフォームの互換性に人気があり、オペレーティングシステム、読み取りデバイス、ソフトウェア間でコンテンツとレイアウトが一貫しています。ただし、Python Plansing Plain Text Filesとは異なり、PDFファイルは、より複雑な構造を持つバイナリファイルであり、フォント、色、画像などの要素を含んでいます。 幸いなことに、Pythonの外部モジュールでPDFファイルを処理することは難しくありません。この記事では、PYPDF2モジュールを使用して、PDFファイルを開き、ページを印刷し、テキストを抽出する方法を示します。 PDFファイルの作成と編集については、私からの別のチュートリアルを参照してください。 準備 コアは、外部モジュールPYPDF2を使用することにあります。まず、PIPを使用してインストールします。 ピップはpです

このチュートリアルでは、Redisキャッシングを活用して、特にDjangoフレームワーク内でPythonアプリケーションのパフォーマンスを向上させる方法を示しています。 Redisのインストール、Django構成、およびパフォーマンスの比較をカバーして、Beneを強調します

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

データサイエンスと処理のお気に入りであるPythonは、高性能コンピューティングのための豊富なエコシステムを提供します。ただし、Pythonの並列プログラミングは、独自の課題を提示します。このチュートリアルでは、これらの課題を調査し、グローバルな承認に焦点を当てています

このチュートリアルでは、Python 3にカスタムパイプラインデータ構造を作成し、機能を強化するためにクラスとオペレーターのオーバーロードを活用していることを示しています。 パイプラインの柔軟性は、一連の機能をデータセットに適用する能力にあります。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境
