検索
ホームページバックエンド開発Python チュートリアルPython を使用したオプション フローの視覚化: ステップバイステップ ガイド

Visualizing Options Flow with Python: A Step-by-Step Guide

進化し続ける金融の世界では、データを視覚化することで市場の傾向についてこれまでにない洞察を得ることができます。この記事では、Yahoo Finance の履歴データを使用して特定の株式のオプション フローを視覚化するという特定の財務分析タスクに Python を活用する方法を検討します。オプション データを取得して処理し、コールおよびプット オプションのフローを示す散布図を生成するコード スニペットを使用します。詳細を見ていきましょう。

はじめる

私たちの目標は、特定の株式のオプション データを分析し、散布図で視覚化することです。この例では、株式ティッカー LLY (Eli Lilly and Company) を使用します。コード スニペットは次のことを実現します:

  1. 指定された株式の最新のオプション データを取得します。
  2. データをフィルタリングしてクリーンアップします。
  3. コールおよびプットのオプションを経時的に表す散布図を作成します。

段階的な内訳

1. ライブラリのインポート

まず、必要なライブラリをインポートする必要があります。

import yfinance as yf
import os
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
import pandas as pd
  • yfinance は、過去の株価データを取得するために使用されます。
  • os はディレクトリとファイルの操作を処理します。
  • datetime と timedelta は日付を管理するためのものです。
  • matplotlib.pyplot は視覚化を作成するためのものです。
  • pandas はデータ操作と分析用です。

2. ディレクトリとファイルのセットアップ

データを保存する出力ディレクトリとファイルを設定します。

output_directory = 'output'
os.makedirs(output_directory, exist_ok=True)
output_file = os.path.join(output_directory, 'output.data')

ここでは、出力ディレクトリが存在することを確認し、データ ファイルのパスを指定します。

3. オプション データの取得と処理

ティッカー LLY のオプション データを取得するには、yfinance を使用します。

ticker = 'LLY'
days = 21
populate_data = 'Y'  # Set 'N' to use existing file, 'Y' to create new file

populate_data が「Y」に設定されている場合、コードは新しいオプション データをフェッチします。 「N」の場合、既存のデータ ファイルが使用されます。

データの取得と処理がどのように行われるかは次のとおりです:

if populate_data == 'Y':
    stock = yf.Ticker(ticker)
    options_dates = stock.options

    today = datetime.now()
    fourteen_days_later = today + timedelta(days)

    with open(output_file, 'w') as file:
        for date in options_dates:
            date_dt = datetime.strptime(date, '%Y-%m-%d')
            if today 



<p>このコードは、コールおよびプットのオプション データをフェッチし、不要なボリューム データを含む行を除外して、ファイルに書き込みます。</p>

<h3>
  
  
  4. 視覚化のためのデータのクリーニングと準備
</h3>

<p>次に、データを読み取り、クリーンアップします。<br>
</p>

<pre class="brush:php;toolbar:false">data = pd.read_csv(output_file, names=['Type', 'Last_Trade_Date', 'Strike', 'Volume'])
data.dropna(inplace=True)
data['Last_Trade_Date'] = pd.to_datetime(data['Last_Trade_Date'])
data = data[data['Volume'].notna()]

データセットに NaN 値が含まれていないこと、および Last_Trade_Date が正しい日時形式であることを確認します。

5. 散布図の作成

散布図を作成する準備ができました:

extra_days_before = 5
extra_days_after = 5

min_date = data['Last_Trade_Date'].min() - timedelta(days=extra_days_before)
max_date = data['Last_Trade_Date'].max() + timedelta(days=extra_days_after)

plt.figure(figsize=(12, 8))

calls_data = data[data['Type'] == 'Call']
plt.scatter(calls_data['Last_Trade_Date'], calls_data['Strike'],
            s=calls_data['Volume'], c='green', alpha=0.6, label='Call')

puts_data = data[data['Type'] == 'Put']
plt.scatter(puts_data['Last_Trade_Date'], puts_data['Strike'],
            s=puts_data['Volume'], c='red', alpha=0.6, label='Put')

plt.xlabel('\nLast Trade Date')
plt.ylabel('Strike Price\n')
plt.title(f'Options Flow for {ticker} ({days} days)\n', fontsize=16)
plt.xticks(rotation=45, ha='right')
plt.gca().xaxis.set_major_formatter(plt.matplotlib.dates.DateFormatter('%Y-%m-%d'))
plt.xlim(min_date, max_date)
plt.subplots_adjust(bottom=0.2)
plt.grid(True)

plt.text(0.5, 0.5, f'{ticker}', color='gray', fontsize=80, alpha=0.5,
         ha='center', va='center', rotation=15, transform=plt.gca().transAxes)
plt.text(0.95, 0.95, 'medium.com/@dmitry.romanoff', color='gray', fontsize=20, alpha=0.5,
         ha='right', va='top', transform=plt.gca().transAxes)
plt.text(0.05, 0.05, 'medium.com/@dmitry.romanoff', color='gray', fontsize=20, alpha=0.5,
         ha='left', va='bottom', transform=plt.gca().transAxes)

plot_file = os.path.join(output_directory, 'options_scatter_plot.png')
plt.savefig(plot_file)

print(f"Scatter plot has been saved to {plot_file}")

このセグメントでは、Y 軸に権利行使価格、X 軸に取引日をとったコール オプションとプット オプションの散布図が作成されます。ポイントのサイズは取引量を表し、緑色はコールを、赤色はプットを示します。また、ブランド化を目的として透かしを追加し、プロットをファイルに保存します。

結論

オプション データを視覚化すると、トレーダーやアナリストが市場センチメントや取引活動を理解するのに役立ちます。このガイドでは、Python を使用してオプション データを取得、処理、視覚化する方法を説明しました。これらの手順に従うことで、このコードを任意の銘柄に適用し、そのオプション フローを分析して、市場トレンドに関する貴重な洞察を得ることができます。

特定のニーズに合わせてコードを自由に変更し、財務データを視覚化するさまざまな方法を検討してください。

以上がPython を使用したオプション フローの視覚化: ステップバイステップ ガイドの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
2時間のPython計画:現実的なアプローチ2時間のPython計画:現実的なアプローチApr 11, 2025 am 12:04 AM

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Python:主要なアプリケーションの調査Python:主要なアプリケーションの調査Apr 10, 2025 am 09:41 AM

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間でどのくらいのPythonを学ぶことができますか?2時間でどのくらいのPythonを学ぶことができますか?Apr 09, 2025 pm 04:33 PM

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は?プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は?Apr 02, 2025 am 07:18 AM

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか?中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか?Apr 02, 2025 am 07:15 AM

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

Python 3.6にピクルスファイルをロードするときに「__Builtin__」モジュールが見つからない場合はどうすればよいですか?Python 3.6にピクルスファイルをロードするときに「__Builtin__」モジュールが見つからない場合はどうすればよいですか?Apr 02, 2025 am 07:12 AM

Python 3.6のピクルスファイルのロードレポートエラー:modulenotFounderror:nomodulenamed ...

風光明媚なスポットコメント分析におけるJieba Wordセグメンテーションの精度を改善する方法は?風光明媚なスポットコメント分析におけるJieba Wordセグメンテーションの精度を改善する方法は?Apr 02, 2025 am 07:09 AM

風光明媚なスポットコメント分析におけるJieba Wordセグメンテーションの問題を解決する方法は?風光明媚なスポットコメントと分析を行っているとき、私たちはしばしばJieba Wordセグメンテーションツールを使用してテキストを処理します...

正規表現を使用して、最初の閉じたタグと停止に一致する方法は?正規表現を使用して、最初の閉じたタグと停止に一致する方法は?Apr 02, 2025 am 07:06 AM

正規表現を使用して、最初の閉じたタグと停止に一致する方法は? HTMLまたは他のマークアップ言語を扱う場合、しばしば正規表現が必要です...

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)