配列
リスト
# Creating a list my_list = [] my_list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] # List of different data types mixed_list = [1, "hello", 3.14, True] # Accessing elements print(my_list[0]) # Output: 1 print(my_list[-1]) # Output: 5 # Append to the end my_list.append(6) # Insert at a specific position my_list.insert(2, 10) # Find an element in an array index=my_list.find(element) # Remove by value my_list.remove(10) # Remove by index removed_element = my_list.pop(2) # Length of the list print(len(my_list)) # Slicing [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] # sequence[start:stop:step] print(my_list[1:4]) # Output: [1, 2, 3] print(my_list[5:]) # Output: [5, 6, 7, 8, 9] print(my_list[:5]) # Output: [0, 1, 2, 3, 4] print(my_list[::2]) # Output: [0, 2, 4, 6, 8] print(my_list[-4:]) # Output: [6, 7, 8, 9] print(my_list[:-4]) # Output: [0, 1, 2, 3, 4, 5] print(my_list[::-1]) # Output: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] print(my_list[8:2:-2]) # Output: [8, 6, 4] print(my_list[1:8:2]) # Output: [1, 3, 5, 7] print(my_list[-2:-7:-1]) # Output: [8, 7, 6, 5, 4] # Reversing a list my_list.reverse() # Sorting a list my_list.sort()
順列と組み合わせ
import itertools # Example list data = [1, 2, 3] # Generating permutations of the entire list perms = list(itertools.permutations(data)) print(perms) # Output: [(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)] # Generating permutations of length 2 perms_length_2 = list(itertools.permutations(data, 2)) print(perms_length_2) # Output: [(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)] combinations(iterable, r) #order does not matter
順列を手動で生成する
再帰を使用して手動で順列を生成することもできます。簡単な実装は次のとおりです:
def permute(arr): result = [] # Base case: if the list is empty, return an empty list if len(arr) == 0: return [[]] # Recursive case for i in range(len(arr)): elem = arr[i] rest = arr[:i] + arr[i+1:] for p in permute(rest): result.append([elem] + p) return result
スタック
(リストはスタックとして使用可能)
st=[] st.append() st.pop() top_element = stack[-1]
ヒント
1) ストリップ:
これは、文字列
から先頭と末尾の空白 (またはその他の指定された文字) を削除するために使用されます。
#EX. (1,2) to 1,2 s.strip('()')
2) 通常の辞書は使用しないでください
from collections import defaultdict dictionary=defaultdict(int)
3) 重要なチェックと変換
s.isdigit() s.isalpha() s.isalnum() s.islower() s.isupper() s.lower() s.upper()
4) 重要な問題
round(number, decimal_digits) ord(each)-ord('a')+1 # value of an alphabet #/ (Floating-Point Division) #// (Floor Division) maxim = float('-inf') minim = float('inf') unique_lengths.sort(reverse=True) s.count('x') list1 = [1, 2, 3] iterable = [4, 5, 6] list1.extend(iterable) position.replace('(', '').replace(')', '') expression = "2 + 3 * 4" result = eval(expression) print(result) #Determinant import numpy as arr=[[1,2,3],[3,4,5],[5,6,7]] print(np.linalg.det(np.array(arr)))
ソート済み
my_list = [3, 1, 4, 1, 5] sorted_list = sorted(my_list) my_tuple = (3, 1, 4, 1, 5) sorted_list = sorted(my_tuple) my_dict = {'apple': 3, 'banana': 1, 'cherry': 2} sorted_keys = sorted(my_dict) my_list = [3, 1, 4, 1, 5] sorted_list = sorted(my_list, reverse=True)
列挙する
my_list = ['a', 'b', 'c'] for index, value in enumerate(my_list): print(index, value)
オブジェクト参照による渡し
不変型 (整数、文字列、タプルなど):
def modify_immutable(x): x = 10 # Rebinding the local variable to a new object print("Inside function:", x) a = 5 modify_immutable(a) #prints 10 print("Outside function:", a) #prints 5
可変型 (リスト、辞書、セットなど):
def modify_mutable(lst): lst.append(4) # Modifying the original list object print("Inside function:", lst) my_list = [1, 2, 3] modify_mutable(my_list) # [1,2,3] print("Outside function:", my_list) # [1,2,3,4]
Numpy 配列 (数値演算用)
import numpy as np # Creating a 1D array arr_1d = np.array([1, 2, 3, 4, 5]) # Creating a 2D array arr_2d = np.array([[1, 2, 3], [4, 5, 6]]) # Creating an array filled with zeros zeros = np.zeros((3, 4)) # Creating an array filled with ones ones = np.ones((2, 3)) # Creating an array with a range of values range_arr = np.arange(0, 10, 2) # Creating an array with evenly spaced values linspace_arr = np.linspace(0, 1, 5) # Creating an identity matrix identity_matrix = np.eye(3) # Shape of the array shape = arr_2d.shape # Output: (2, 3) # Size of the array (total number of elements) size = arr_2d.size # Output: 6 # Element-wise addition arr_add = arr_1d + 5 # Output: array([6, 7, 8, 9, 10]) # Element-wise subtraction arr_sub = arr_1d - 2 # Output: array([ -1, 0, 1, 2, 3]) # Element-wise multiplication arr_mul = arr_1d * 2 # Output: array([ 2, 4, 6, 8, 10]) # Element-wise division arr_div = arr_1d / 2 # Output: array([0.5, 1. , 1.5, 2. , 2.5]) # Sum total_sum = np.sum(arr_2d) # Output: 21 # Mean mean_value = np.mean(arr_2d) # Output: 3.5 # Standard deviation std_dev = np.std(arr_2d) # Output: 1.707825127659933 # Maximum and minimum max_value = np.max(arr_2d) # Output: 6 min_value = np.min(arr_2d) # Output: 1 # Reshaping reshaped_arr = arr_1d.reshape((5, 1)) # Flattening flattened_arr = arr_2d.flatten() # Transposing transposed_arr = arr_2d.T # Indexing element = arr_2d[1, 2] # Output: 6 # Slicing subarray = arr_2d[0:2, 1:3] # Output: array([[2, 3], [5, 6]])
アタイプ
これは、numpy 配列を別のデータ型に変換するために使用される NumPy の関数です。
# Datatypes: np.int32,np.float32,np.float64,np.str_ import numpy as np # Create an integer array int_array = np.array([1, 2, 3, 4, 5], dtype=np.int32) # Convert to float float_array = int_array.astype(np.float32) print("Original array:", int_array) print("Converted array:", float_array)
形を変える
データを変更せずに配列の形状を変更するための強力なツールです
import numpy as np # Create a 1D array array = np.arange(12) # Reshape to a 2D array (3 rows x 4 columns) reshaped_array = array.reshape((3, 4))
マットプロットリブ
import numpy as np import matplotlib.pyplot as plt # Create a random 2D array data = np.random.rand(10, 10) # Create a figure with a specific size and resolution plt.figure(figsize=(8, 6), dpi=100) # Display the 2D array as an image plt.imshow(data, cmap='viridis', interpolation='nearest') # Add a color bar to show the scale of values plt.colorbar() # Show the plot plt.show()
辞書
# Creating an empty dictionary # Maintains ascending order like map in cpp my_dict = {} # Creating a dictionary with initial values my_dict = {'name': 'Alice', 'age': 25, 'city': 'New York'} # Creating a dictionary using the dict() function my_dict = dict(name='Alice', age=25, city='New York') # Accessing a value by key name = my_dict['name'] # Output: 'Alice' # Using the get() method to access a value age = my_dict.get('age') # Output: 25 country = my_dict.get('country') # Output: None # Adding a new key-value pair my_dict['email'] = 'alice@example.com' # Updating an existing value my_dict['age'] = 26 # Removing a key-value pair using pop() age = my_dict.pop('age') # Removes 'age' and returns its value # Getting all keys in the dictionary keys = my_dict.keys() # Output: dict_keys(['name', 'email']) # Getting all values in the dictionary values = my_dict.values() # Output: dict_values(['Alice', 'alice@example.com']) # Iterating over keys for key in my_dict: print(key) # Iterating over values for value in my_dict.values(): print(value) # Iterating over key-value pairs for key, value in my_dict.items(): print(f"{key}: {value}")
デフォルトディクテーション
from collections import defaultdict d = defaultdict(int) # Initializes 0 to non-existent keys d['apple'] += 1 d['banana'] += 2
セット
# Creating an empty set my_set = set() # Creating a set with initial values my_set = {1, 2, 3, 4, 5} # Creating a set from a list my_list = [1, 2, 3, 4, 5] my_set = set(my_list) # Creating a set from a string my_set = set('hello') # Output: {'e', 'h', 'l', 'o'} # Adding an element to a set my_set.add(6) # my_set becomes {1, 2, 3, 4, 5, 6} # Removing an element from a set (raises KeyError if not found) my_set.remove(3) # my_set becomes {1, 2, 4, 5, 6} # Removing and returning an arbitrary element from the set element = my_set.pop() # Returns and removes an arbitrary element
弦
# Single quotes str1 = 'Hello' # Double quotes str2 = "World" # Triple quotes for multi-line strings str3 = '''This is a multi-line string.''' # Raw strings (ignores escape sequences) raw_str = r'C:\Users\Name' str1 = 'Hello' # Accessing a single character char = str1[1] # 'e' # Accessing a substring (slicing) substring = str1[1:4] # 'ell' # Negative indexing last_char = str1[-1] # 'o' # Using + operator concatenated = 'Hello' + ' ' + 'World' # 'Hello World' # Using join method words = ['Hello', 'World'] concatenated = ' '.join(words) # 'Hello World' name = 'Alice' age = 25 # String formatting formatted_str = f'My name is {name} and I am {age} years old.' # Convert to uppercase upper_str = str1.upper() # 'HELLO WORLD' # Convert to lowercase lower_str = str1.lower() # 'hello world' # Convert to capitalize capital_str = str1.capitalize() # 'Hello world' str1 = ' Hello World ' # Remove leading and trailing whitespace trimmed = str1.strip() # 'Hello World' str1 = 'Hello World Python' # Split the string into a list of substrings split_list = str1.split() # ['Hello', 'World', 'Python'] # Split the string with a specific delimiter split_list = str1.split(' ') # ['Hello', 'World', 'Python'] # Join a list of strings into a single string joined_str = ' '.join(split_list) # 'Hello World Python' str1 = 'Hello World' # Find the position of a substring pos = str1.find('World') # 6 str1 = 'Hello123' # Check if all characters are alphanumeric is_alnum = str1.isalnum() # True # Check if all characters are alphabetic is_alpha = str1.isalpha() # False # Check if all characters are digits is_digit = str1.isdigit() # False # Check if all characters are lowercase is_lower = str1.islower() # False # Check if all characters are uppercase is_upper = str1.isupper() # False
常につながりましょう!
この投稿を気に入っていただけた場合は、ソーシャル メディアで私をフォローして、最新情報や洞察を入手することを忘れないでください:
Twitter: マダガネサン
Instagram: マダガネサン
LinkedIn: マダガネサン
以上がPython コードのスニペットの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

Python 3.6のピクルスファイルのロードレポートエラー:modulenotFounderror:nomodulenamed ...


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい
