検索
ホームページバックエンド開発Python チュートリアルPython でのオブジェクト検出の初心者ガイド

A Beginner’s Guide to Object Detection in Python

物体検出は、コンピューター ビジョンの最も興味深い分野の 1 つであり、機械が画像やビデオ内の物体を認識して位置を特定できるようになります。このガイドでは、Python を使用したオブジェクト検出について紹介し、一般的なライブラリを使用して基本的な検出パイプラインを実装するのに役立ちます。初心者でも、既存のスキルをさらに強化したい場合でも、このチュートリアルは開始するための重要な洞察を提供します。


物体検出とは何ですか? ?

物体検出には 2 つの主要なタスクが含まれます:

  1. 画像分類: 画像内にどのオブジェクトが存在するかを決定します。
  2. オブジェクトの位置特定: 境界ボックスを使用してオブジェクトの位置を検索します。

これにより、モデルがクラス ラベルを予測するだけの単純な画像分類よりも複雑になります。物体検出には、画像内の物体のクラスと位置の両方を予測する必要があります。


人気の物体検出アルゴリズム ?

1. YOLO (一度だけ見てください)

  • スピードで知られる YOLO は、境界ボックスとクラス確率を同時に予測するリアルタイムの物体検出システムです。

2. SSD (シングルショットマルチボックス検出器)

  • SSD はシングル パスでオブジェクトを検出し、特徴マップを使用してさまざまなスケールでオブジェクトを検出することに優れています。

3. R-CNN の高速化

  • 最初に地域の提案を生成し、次にそれらを分類する 2 段階のモデル。 YOLO や SSD よりも正確ですが、速度は遅くなります。

Python 環境をセットアップする ?️

Python でオブジェクト検出を開始するには、いくつかのライブラリが必要です。

ステップ 1: Python をインストールする

python.org にアクセスし、Python の最新バージョン (3.8 以降) をダウンロードします。

ステップ 2: 必要なライブラリをインストールする

画像処理には OpenCV を使用し、オブジェクト検出には TensorFlow を使用します。

pip install opencv-python tensorflow

オプションで、Matplotlib をインストールして、検出結果を視覚化します。

pip install matplotlib

物体検出用の事前トレーニング済みモデル ?

最初からトレーニングする代わりに、TensorFlow のオブジェクト検出 API または PyTorch の事前トレーニングされたモデルを使用します。事前トレーニングされたモデルは、COCO (Common Objects in Context) などのデータセットを活用することでリソースを節約します。

このチュートリアルでは、高速で正確な事前トレーニング済みモデルである TensorFlow の ssd_mobilenet_v2 を使用します。


TensorFlow と OpenCV によるオブジェクト検出 ?‍?

シンプルなオブジェクト検出パイプラインを実装する方法は次のとおりです。

ステップ 1: 事前トレーニングされたモデルをロードする

import tensorflow as tf

# Load the pre-trained model
model = tf.saved_model.load("ssd_mobilenet_v2_fpnlite_320x320/saved_model")

モデルは TensorFlow のモデル ズーからダウンロードできます。

ステップ 2: 画像をロードして処理する

import cv2
import numpy as np

# Load an image using OpenCV
image_path = 'image.jpg'
image = cv2.imread(image_path)

# Convert the image to a tensor
input_tensor = tf.convert_to_tensor(image)
input_tensor = input_tensor[tf.newaxis, ...]

ステップ 3: オブジェクト検出を実行する

# Run inference on the image
detections = model(input_tensor)

# Extract relevant information like bounding boxes, classes, and scores
num_detections = int(detections.pop('num_detections'))
detections = {key: value[0, :num_detections].numpy() for key, value in detections.items()}
boxes = detections['detection_boxes']
scores = detections['detection_scores']
classes = detections['detection_classes'].astype(np.int64)

ステップ 4: 結果を視覚化する

# Draw bounding boxes on the image
for i in range(num_detections):
    if scores[i] > 0.5:  # Confidence threshold
        box = boxes[i]
        h, w, _ = image.shape
        y_min, x_min, y_max, x_max = box

        start_point = (int(x_min * w), int(y_min * h))
        end_point = (int(x_max * w), int(y_max * h))

        # Draw rectangle
        cv2.rectangle(image, start_point, end_point, (0, 255, 0), 2)

# Display the image
cv2.imshow("Detections", image)
cv2.waitKey(0)
cv2.destroyAllWindows()

このコードは画像をロードし、オブジェクトを検出し、境界ボックスでそれらを視覚化します。信頼性のしきい値は 50% に設定され、信頼性の低い検出が除外されます。


高度なトピック ?

物体検出スキルを次のレベルに引き上げる準備はできましたか?

  • カスタム オブジェクト検出: TensorFlow または PyTorch を使用して、独自のデータセットでカスタム モデルをトレーニングします。
  • リアルタイム検出: セキュリティや自動運転などのアプリケーションのライブ ビデオ ストリームに物体検出を適用します。
  • エッジ デバイスの導入: モバイルおよび IoT デバイスのオブジェクト検出モデルを最適化します。

結論 ?

Python のオブジェクト検出は、ヘルスケア、セキュリティ、自動運転などの業界に可能性の世界を開きます。 TensorFlow や OpenCV などのツールを使用すると、YOLO や SSD などの事前トレーニングされたモデルを使用して検出パイプラインを迅速に実装できます。基本を理解したら、リアルタイム検出やカスタム モデルのトレーニングなど、より高度なトピックを検討できます。

次に物体検出をどこに適用しますか?以下のコメント欄で話し合いましょう!


キーワード: 物体検出、Python、コンピューター ビジョン、OpenCV、TensorFlow、YOLO、SSD、高速 R-CNN

以上がPython でのオブジェクト検出の初心者ガイドの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Python vs. C:重要な違​​いを理解しますPython vs. C:重要な違​​いを理解しますApr 21, 2025 am 12:18 AM

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

Python vs. C:プロジェクトのためにどの言語を選択しますか?Python vs. C:プロジェクトのためにどの言語を選択しますか?Apr 21, 2025 am 12:17 AM

PythonまたはCの選択は、プロジェクトの要件に依存します。1)迅速な開発、データ処理、およびプロトタイプ設計が必要な場合は、Pythonを選択します。 2)高性能、低レイテンシ、および緊密なハードウェアコントロールが必要な場合は、Cを選択します。

Pythonの目標に到達する:毎日2時間のパワーPythonの目標に到達する:毎日2時間のパワーApr 20, 2025 am 12:21 AM

毎日2時間のPython学習を投資することで、プログラミングスキルを効果的に改善できます。 1.新しい知識を学ぶ:ドキュメントを読むか、チュートリアルを見る。 2。練習:コードと完全な演習を書きます。 3。レビュー:学んだコンテンツを統合します。 4。プロジェクトの実践:実際のプロジェクトで学んだことを適用します。このような構造化された学習計画は、Pythonを体系的にマスターし、キャリア目標を達成するのに役立ちます。

2時間の最大化:効果的なPython学習戦略2時間の最大化:効果的なPython学習戦略Apr 20, 2025 am 12:20 AM

2時間以内にPythonを効率的に学習する方法は次のとおりです。1。基本的な知識を確認し、Pythonのインストールと基本的な構文に精通していることを確認します。 2。変数、リスト、関数など、Pythonのコア概念を理解します。 3.例を使用して、基本的および高度な使用をマスターします。 4.一般的なエラーとデバッグテクニックを学習します。 5.リストの概念を使用したり、PEP8スタイルガイドに従ったりするなど、パフォーマンスの最適化とベストプラクティスを適用します。

PythonとCのどちらかを選択:あなたに適した言語PythonとCのどちらかを選択:あなたに適した言語Apr 20, 2025 am 12:20 AM

Pythonは初心者やデータサイエンスに適しており、Cはシステムプログラミングとゲーム開発に適しています。 1. Pythonはシンプルで使いやすく、データサイエンスやWeb開発に適しています。 2.Cは、ゲーム開発とシステムプログラミングに適した、高性能と制御を提供します。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

Python vs. C:プログラミング言語の比較分析Python vs. C:プログラミング言語の比較分析Apr 20, 2025 am 12:14 AM

Pythonはデータサイエンスと迅速な発展により適していますが、Cは高性能およびシステムプログラミングにより適しています。 1. Python構文は簡潔で学習しやすく、データ処理と科学的コンピューティングに適しています。 2.Cには複雑な構文がありますが、優れたパフォーマンスがあり、ゲーム開発とシステムプログラミングでよく使用されます。

1日2時間:Python学習の可能性1日2時間:Python学習の可能性Apr 20, 2025 am 12:14 AM

Pythonを学ぶために1日2時間投資することは可能です。 1.新しい知識を学ぶ:リストや辞書など、1時間で新しい概念を学びます。 2。練習と練習:1時間を使用して、小さなプログラムを書くなどのプログラミング演習を実行します。合理的な計画と忍耐力を通じて、Pythonのコアコンセプトを短時間で習得できます。

Python vs. C:曲線と使いやすさの学習Python vs. C:曲線と使いやすさの学習Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。