検索
ホームページバックエンド開発Python チュートリアル耐久性のある Python: 長期にわたって実行される防弾ワークフローを簡単に構築

Durable Python: Building Bullet-Proof Long-Running Workflows, Made Simple

現代のソフトウェア開発では、さまざまなサービスの API を接続し、同期イベントと非同期イベントの両方を処理する堅牢なワークフローを作成することが共通の課題です。従来のアプローチでは、キュー、マイクロサービス、状態管理システムを組み合わせて使用​​して、スケーラブルなアプリケーションを構築します。このアーキテクチャは効果的ではありますが、メッセージ キューなどのインフラストラクチャのセットアップと維持、サーバーやラムダ関数の実行、データベースの状態管理、複雑なエラー処理メカニズムの実装など、大きなオーバーヘッドが伴います。

このすべてのインフラストラクチャを管理する手間をかけずに、長時間実行されるワークフローを処理する、より簡単で信頼性の高い方法があったとしたらどうでしょうか?それが Durable Python の目標です。試すには、ベータ版に登録してください。

長時間実行されるプロセスに対する単純なソリューションの問題

GitHub でプル リクエスト (PR) を監視したいと想像してください。新しい PR が開かれるたびに、ディスカッション用の専用 Slack チャネルを作成し、PR が閉じられるか統合されるまで毎日リマインダーを送信したいと考えています。これは簡単そうに聞こえるので、基本的な Python 関数で解決できると思うかもしれません (これは ChatGPT によって生成された基本的な Python 関数です):

@app.route('/webhook', methods=['POST'])
def github_webhook():
    data = request.json
    if 'pull_request' in data and data['action'] == 'opened':
        pr_number = data['pull_request']['number']
        pr_url = data['pull_request']['html_url']
        # Create a new Slack channel for the PR
        channel_id = create_slack_channel(pr_number)
        send_slack_notification(channel_id, pr_number, pr_url)
        # Periodically check the PR status and send reminders until it's closed or merged
        while True:
            time.sleep(3600)  # Wait for 1 hour before checking the status again
            pr_status = check_pr_status(pr_number)
            if pr_status == 'open':
                send_slack_notification(channel_id, pr_number, pr_url)
            else:
                break
    return jsonify({'status': 'ok'})

このコード スニペットはタスクを処理しているように見えますが、「ハッピー フロー」シナリオにのみ適しています。実際のアプリケーションでは、この単純なアプローチでは不十分です。 while ループはサーバーの継続的な稼働時間に依存していますが、これは保証されていません。プロセスがクラッシュし、サーバーが再起動し、突然ワークフローが中断される可能性があります。

現実世界のソリューション: イベント駆動型アプリケーション

より信頼性の高いアプローチには、イベント駆動型アプリケーションの構築が含まれます。ここでは、キューを使用して GitHub イベントをリッスンし、cron ジョブを使用してリマインダーを送信し、データベースを使用して PR とチャネルの状態を保存し、関数を使用してこれらのイベントを処理します。通常、このセットアップはクラウド インフラストラクチャ上で実行され、展開と実行に AWS Lambda などのサービスを利用します。

この方法は実行可能で堅牢ですが、かなりのセットアップ、メンテナンス、専門知識も必要です。インフラストラクチャの管理、稼働時間の確保、エラー状態の処理には、多大なリソースと熟練したチームが必要です。

耐久性のある Python の登場: シンプルさと信頼性の融合

素朴な Python コードの単純さと非同期設計の信頼性を組み合わせられたらどうでしょうか?たとえプロセスがクラッシュしたりサーバーが再起動したりしても、中断したところから再開することを Python が保証できたらどうなるでしょうか?

AutoKitteh は、Durable Python を使用してまさにこの課題に対処します。 Durable Python を使用すると、ユーザーは Python コードを作成し、システムはプロセスが再起動された場合に同じポイントから実行を継続することを保証します。制限はありますが (長いダウンタイムは理想的ではない可能性があります)、ほとんどのユースケースでは、このソリューションは完全に機能します。

Durable-Python が提供するもの

Durable-Python を使用すると、状態を手動で管理する必要がなく、構築やデバッグが困難なイベント駆動型のステート マシンではなく、継続的なフローとしてワークフローを作成できます。 AutoKitteh はインフラストラクチャとして、組み込みのキューと外部アプリケーションおよび API との統合を備えているため、Python で堅牢なワークフローを迅速に開発することが簡単になります。

仕組み

魔法は必要ありません。ただ確かなエンジニアリングが必要です。 AutoKitteh は、耐久性のあるワークフローを構築するためのフレームワークである Temporal を利用しています。 Temporal では、信頼性を確保するための決定論、冪等性、その他の概念の理解など、特定のコーディング方法が必要です。 AutoKitteh はこれらの複雑さを抽象化し、開発者が標準の Python コードを作成できるようにします。内部では、副作用のある関数はすべて Temporal アクティビティに変換されます。開発者は、これらの詳細を気にする必要はありません。ビジネス ロジックの作成だけに集中してください。

技術的な詳細については、AutoKitteh のドキュメントを参照してください。

費用はかかりますか?

もちろん、あらゆる抽象化には代償が伴います。 Durable Python は内部的にワークフローのフローを記録して、障害後の回復を可能にします。これにより、ストレージとパフォーマンスのコストが発生します。

Durable Python は、データ アプリケーションを構築するのではなく、API のオーケストレーションを目的として設計されています。高性能アプリケーションが必要な場合は、カスタム ソリューションの構築を検討する必要があります。ただし、最小限の開発とインフラストラクチャ投資で信頼性の高いワークフローを迅速に開発したい場合は、Durable Python が良い選択肢になる可能性があります。

現実世界のアプリケーション

永続的な Python は、特に次のような信頼性が重要な領域で、幅広いワークフローに適用できます。

  • API オーケストレーション - 信頼できる内部ワークフローを構築します。
  • DevOps 自動化: 障害からの回復を保証して、デプロイ パイプラインまたはコード レビューの自動化を自動化します。
  • ChatOps: チャット プラットフォームと統合して、チーム通知を自動化し、ワークフローを管理します。
  • MLOps: 長時間実行される機械学習ワークフローが、中断があってもシームレスに継続されるようにします。

ワークフローの例はここにあります。

結論: コードが減れば手間も減る

AutoKitteh を活用して実装された耐久性のある Python コンセプトにより、開発者は最小限のコードで信頼性の高いワークフローの自動化を構築、展開、管理できます。永続的な実行とシームレスなリカバリはバックグラウンドで処理されるため、本当に重要なこと、つまりビジネス ロジックに集中できます。

耐久性を実現するための優れたツール (Temporal や Restate など) は数多くありますが、Durable-Python は同じ結果を達成するための高速かつシンプルでコスト効率の高い方法を提供します。

以上が耐久性のある Python: 長期にわたって実行される防弾ワークフローを簡単に構築の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Pythonを使用してテキストファイルのZIPF配布を見つける方法Pythonを使用してテキストファイルのZIPF配布を見つける方法Mar 05, 2025 am 09:58 AM

このチュートリアルでは、Pythonを使用してZIPFの法則の統計的概念を処理する方法を示し、法律の処理時にPythonの読み取りおよび並べ替えの効率性を示します。 ZIPF分布という用語が何を意味するのか疑問に思うかもしれません。この用語を理解するには、まずZIPFの法律を定義する必要があります。心配しないでください、私は指示を簡素化しようとします。 ZIPFの法則 ZIPFの法則は単に意味します。大きな自然言語のコーパスでは、最も頻繁に発生する単語は、2番目の頻繁な単語のほぼ2倍の頻度で表示されます。 例を見てみましょう。アメリカ英語の茶色のコーパスを見ると、最も頻繁な言葉は「thであることに気付くでしょう。

Pythonでファイルをダウンロードする方法Pythonでファイルをダウンロードする方法Mar 01, 2025 am 10:03 AM

Pythonは、インターネットからファイルをダウンロードするさまざまな方法を提供します。これは、urllibパッケージまたはリクエストライブラリを使用してHTTPを介してダウンロードできます。このチュートリアルでは、これらのライブラリを使用してPythonからURLからファイルをダウンロードする方法を説明します。 ライブラリをリクエストします リクエストは、Pythonで最も人気のあるライブラリの1つです。クエリ文字列をURLに手動で追加したり、POSTデータのエンコードをフォームに追加せずに、HTTP/1.1リクエストを送信できます。 リクエストライブラリは、以下を含む多くの機能を実行できます フォームデータを追加します マルチパートファイルを追加します Python応答データにアクセスします リクエストを行います 頭

HTMLを解析するために美しいスープを使用するにはどうすればよいですか?HTMLを解析するために美しいスープを使用するにはどうすればよいですか?Mar 10, 2025 pm 06:54 PM

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

Pythonでの画像フィルタリングPythonでの画像フィルタリングMar 03, 2025 am 09:44 AM

ノイズの多い画像を扱うことは、特に携帯電話や低解像度のカメラの写真でよくある問題です。 このチュートリアルでは、OpenCVを使用してPythonの画像フィルタリング手法を調査して、この問題に取り組みます。 画像フィルタリング:強力なツール 画像フィルター

Pythonを使用してPDFドキュメントの操作方法Pythonを使用してPDFドキュメントの操作方法Mar 02, 2025 am 09:54 AM

PDFファイルは、クロスプラットフォームの互換性に人気があり、オペレーティングシステム、読み取りデバイス、ソフトウェア間でコンテンツとレイアウトが一貫しています。ただし、Python Plansing Plain Text Filesとは異なり、PDFファイルは、より複雑な構造を持つバイナリファイルであり、フォント、色、画像などの要素を含んでいます。 幸いなことに、Pythonの外部モジュールでPDFファイルを処理することは難しくありません。この記事では、PYPDF2モジュールを使用して、PDFファイルを開き、ページを印刷し、テキストを抽出する方法を示します。 PDFファイルの作成と編集については、私からの別のチュートリアルを参照してください。 準備 コアは、外部モジュールPYPDF2を使用することにあります。まず、PIPを使用してインストールします。 ピップはpです

DjangoアプリケーションでRedisを使用してキャッシュする方法DjangoアプリケーションでRedisを使用してキャッシュする方法Mar 02, 2025 am 10:10 AM

このチュートリアルでは、Redisキャッシングを活用して、特にDjangoフレームワーク内でPythonアプリケーションのパフォーマンスを向上させる方法を示しています。 Redisのインストール、Django構成、およびパフォーマンスの比較をカバーして、Beneを強調します

Natural Language Toolkit(NLTK)の紹介Natural Language Toolkit(NLTK)の紹介Mar 01, 2025 am 10:05 AM

自然言語処理(NLP)は、人間の言語の自動または半自動処理です。 NLPは言語学と密接に関連しており、認知科学、心理学、生理学、数学の研究とのリンクがあります。コンピューターサイエンスで

TensorflowまたはPytorchで深い学習を実行する方法は?TensorflowまたはPytorchで深い学習を実行する方法は?Mar 10, 2025 pm 06:52 PM

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール