デザインパターンとは何ですか?
デザイン パターンは、複雑な問題に対する解決策です。デザイン パターンとは、特定のデザイン上の問題を解決する方法でクラスとインターフェイスを作成することです。通常、システムを設計しているときにいくつかの問題に遭遇しますが、それらの問題には一連の設計パターンがあります。デザイン パターンは通常、クラス、インターフェイス、およびそれらのクラス間の関係を含むテンプレートです。
デザインパターンの種類:
創造的なデザインパターン:
これらのタイプのパターンは、特定の状況と互換性のある方法でオブジェクトの作成を処理します。
作成レベルでは、システムの特定の部分を独立して作成するか、一緒に構成して、柔軟性と互換性を確保する方法を決定できます。
このカテゴリに分類されるデザイン パターンのリストは次のとおりです:
- シングルトン: この設計パターンでは、インスタンスが 1 つだけあり、そのインスタンスがアプリケーション全体で使用されます。
シングルトン設計パターンの要点:
- プライベート コンストラクター: クラスのインスタンスが 1 つだけ作成されるようにしたいため、コンストラクターをプライベートとしてマークすることは非常に重要です。
- プライベート静的インスタンス: クラス メモリ内にオブジェクトのインスタンスが 1 つだけあることを保証したいため、プライベート アクセス修飾子を使用します。
- パブリック静的メソッド (アクセス): これは、単一インスタンスへのグローバル アクセス ポイントです。このメソッドは基本的に、インスタンスが存在しない場合はインスタンスを作成し、すでに存在する場合は同じインスタンスを返します。
シングルトン設計パターンの例
public class Singleton { // Private static instance of the class private static Singleton instance; private int count; // Private constructor to prevent instantiation private Singleton() { // initialization code } // Public static method to provide access to the instance public static synchronized Singleton getInstance() { if (instance == null) { instance = new Singleton(); } return instance; } // Example method public void getCount() { System.out.println("The value of count is: " + count); } public void increaseCount() { count++; } public void decreaseCount() { count--; } } public class Main { public static void main(String[] args) { // Get the single instance of Singleton Singleton singleton = Singleton.getInstance(); singleton.increaseCount(); singleton.getCount(); // Output: The value of count is: 1 // Get the same instance of Singleton Singleton anotherSingleton = Singleton.getInstance(); anotherSingleton.decreaseCount(); anotherSingleton.getCount(); // Output: The value of count is: 0 // Both singleton and anotherSingleton refer to the same instance } }
- Builder: Builder パターンでは、オブジェクトを段階的に作成する方法を定義します。このパターンは柔軟性も提供し、同じオブジェクトの異なるバージョンを同じ構築プロセスを使用して作成できるようにします。
ビルダー パターンの重要な要素:
- 製品: これは構築中の複雑なオブジェクトです。
- Builder Interface: 製品のさまざまな部分を作成するメソッドを定義します。これらのメソッドは通常、メソッド チェーンを可能にするためにビルダー オブジェクト自体を返します。
- コンクリート ビルダー:ビルダー インターフェイスを実装し、製品のパーツを作成するための特定の実装を提供します。
ビルダーパターンの例:
この例では、ビルダー デザイン パターンを使用して、材料を段階的に追加してチョコレート スプレッド パンを作成する方法を示します。
// Product Class class Bread { private String bread; private String spread; private String chiaSeeds; private String pumpkinSeeds; public void setBread(String bread) { this.bread = bread; } public void setSpread(String spread) { this.spread = spread; } public void setChiaSeeds(String chiaSeeds) { this.chiaSeeds = chiaSeeds; } public void setPumpkinSeeds(String pumpkinSeeds) { this.pumpkinSeeds = pumpkinSeeds; } @Override public String toString() { return "Bread with " + spread + ", topped with " + chiaSeeds + " and " + pumpkinSeeds; } } // Builder Interface interface BreadBuilder { BreadBuilder addBread(); BreadBuilder addChocolateSpread(); BreadBuilder addChiaSeeds(); BreadBuilder addPumpkinSeeds(); Bread build(); } // Concrete Builder class ChocolateBreadBuilder implements BreadBuilder { private Bread bread = new Bread(); @Override public BreadBuilder addBread() { bread.setBread("Whole grain bread"); return this; } @Override public BreadBuilder addChocolateSpread() { bread.setSpread("Chocolate spread"); return this; } @Override public BreadBuilder addChiaSeeds() { bread.setChiaSeeds("Chia seeds"); return this; } @Override public BreadBuilder addPumpkinSeeds() { bread.setPumpkinSeeds("Pumpkin seeds"); return this; } @Override public Bread build() { return bread; } } // Client Code public class Main { public static void main(String[] args) { // Create a builder and build the chocolate spread bread BreadBuilder builder = new ChocolateBreadBuilder(); Bread myBread = builder.addBread() .addChocolateSpread() .addChiaSeeds() .addPumpkinSeeds() .build(); // Output the result System.out.println(myBread); } }
- ファクトリ メソッド: ファクトリ メソッド パターンでは、オブジェクトを作成する方法を定義しますが、作成されるオブジェクトの特定のタイプをサブクラスが決定できるようにします。
ファクトリー パターンの重要な要素:
- 製品インターフェース: すべての製品の共通インターフェースを定義します。
- 具体的な製品: 製品インターフェイスを実装します。
- 作成者: ファクトリ メソッドを宣言します。
- コンクリート作成者: さまざまなコンクリート製品を返すファクトリ メソッドを実装します。
// Product Interface interface Juice { void serve(); } // Concrete Product 1 class OrangeJuice implements Juice { @Override public void serve() { System.out.println("Serving Orange Juice."); } } // Concrete Product 2 class MangoJuice implements Juice { @Override public void serve() { System.out.println("Serving Mango Juice."); } } // Creator Abstract Class abstract class JuiceFactory { // Factory method public abstract Juice createJuice(); } // Concrete Creator 1 class OrangeJuiceFactory extends JuiceFactory { @Override public Juice createJuice() { return new OrangeJuice(); } } // Concrete Creator 2 class MangoJuiceFactory extends JuiceFactory { @Override public Juice createJuice() { return new MangoJuice(); } } // Client Code public class Main { public static void main(String[] args) { // Create an Orange Juice using its factory JuiceFactory orangeJuiceFactory = new OrangeJuiceFactory(); Juice orangeJuice = orangeJuiceFactory.createJuice(); orangeJuice.serve(); // Output: Serving Orange Juice. // Create a Mango Juice using its factory JuiceFactory mangoJuiceFactory = new MangoJuiceFactory(); Juice mangoJuice = mangoJuiceFactory.createJuice(); mangoJuice.serve(); // Output: Serving Mango Juice. } }
構造設計パターン
この設計パターンは、クラスとオブジェクトがどのように構成されてより大きな構造を形成するかに主に焦点を当てています。これらは、オブジェクトとクラス間の組織と関係に焦点を当て、構造を簡素化し、柔軟性を高め、保守性を促進します。
- アダプター パターン: このパターンでは、互換性のないインターフェイスを持つオブジェクトが連携できるようにします。これは、互換性のない 2 つのインターフェイス間のブリッジとして機能し、既存のコードを変更せずに通信できるようにします。
アダプター パターンの重要な要素:
- Target Interface: It is an interface that will solve the problem (bridging the gap between the incompatible interfaces).
- Client: The class or code that interacts with the target interface.
- Adaptee: This is the interface which is not compatible with the current client requirements.
- Adapter: Implements the target interface and contains an instance of the adaptee. It translates requests from the target interface to the adaptee’s interface, making them compatible.
// Target Interface (Menu) interface Menu { void orderDish(String dish); } // Adaptee (Chef) class Chef { public void prepareDish(String dishName) { System.out.println("Chef is preparing " + dishName + "."); } } // Adapter (Waiter) class Waiter implements Menu { private Chef chef; public Waiter(Chef chef) { this.chef = chef; } @Override public void orderDish(String dish) { chef.prepareDish(dish); } } // Client Code public class Restaurant { public static void main(String[] args) { Chef chef = new Chef(); Menu waiter = new Waiter(chef); // Customer places an order via the waiter waiter.orderDish("Spaghetti Carbonara"); // Output: Chef is preparing Spaghetti Carbonara. } }
- Facade pattern: Simplifies the interaction with a complex system by providing a unified interface (facade). Instead of directly calling several different methods across various objects, the client interacts with the facade, which internally manages those operations.
Key essentials of the facade design pattern:
- Facade: It is an interface that wraps all the complex subsystem interfaces and delegates the complex tasks to the subsystems that actually perform the work.
- Subsystem Classes: These are the classes that acutally perform the work.
An example of facade design pattern:
The example illustrates the Facade Pattern which simplifies the process of washing, drying, and pressing clothes. It hides the complexity of interacting with multiple subsystems behind a single, unified interface.
// Subsystem Classes class WashingMachine { public void wash() { System.out.println("Washing clothes."); } } class Dryer { public void dry() { System.out.println("Drying clothes."); } } class Iron { public void press() { System.out.println("Pressing clothes."); } } // Facade Class class LaundryFacade { private WashingMachine washingMachine; private Dryer dryer; private Iron iron; public LaundryFacade(WashingMachine washingMachine, Dryer dryer, Iron iron) { this.washingMachine = washingMachine; this.dryer = dryer; this.iron = iron; } public void doLaundry() { System.out.println("Starting the laundry process..."); washingMachine.wash(); dryer.dry(); iron.press(); System.out.println("Laundry process complete."); } } // Client Code public class Main { public static void main(String[] args) { WashingMachine washingMachine = new WashingMachine(); Dryer dryer = new Dryer(); Iron iron = new Iron(); LaundryFacade laundryFacade = new LaundryFacade(washingMachine, dryer, iron); // Use the facade to do the laundry laundryFacade.doLaundry(); } }
Behavioral design patterns
The patterns that fall under this category mainly deals with communication between objects and how they interact with each other.
- Iterator pattern: In the Iterator Pattern, we define a way to sequentially access elements of a collection without needing to use conventional methods, such as for loops or direct indexing. Instead, the pattern provides a standard interface (usually methods like next() and hasNext()) to traverse the collection. This approach abstracts the iteration process, allowing the client to navigate through the collection without needing to understand its internal structure or use traditional iteration methods.
Key essentials of this pattern are:
- Iterator Interface: We define all the methods such as next(), hasNext(), and currentItem().These are used to traverse the collection.
- Concrete Iterator: This is the concrete implementation of the iterator interface.
- Aggregate Interface: In this interface,we define methods to create iterators.All the methods returns an instance of the Iterator.
- Concrete Aggregate: It's just a concrete implementation of the aggregate interface.
Example of iterator pattern:
This example demostrates a simple usecase of iterators a employees object using iterator pattern.
// Iterator Interface interface Iterator { boolean hasNext(); Object next(); } // Aggregate Interface interface Aggregate { Iterator createIterator(); } // Employee Class class Employee { public String Name; public int Age; public String Department; public int EmployeeId; public Employee(String name, int age, String department, int employeeId) { this.Name = name; this.Age = age; this.Department = department; this.EmployeeId = employeeId; } } // Concrete Aggregate class EmployeeCollection implements Aggregate { private Employee[] employees; public EmployeeCollection(Employee[] employees) { this.employees = employees; } @Override public Iterator createIterator() { return new EmployeeIterator(this.employees); } } // Concrete Iterator class EmployeeIterator implements Iterator { private Employee[] employees; private int position = 0; public EmployeeIterator(Employee[] employees) { this.employees = employees; } @Override public boolean hasNext() { return position
- Strategy pattern: In this pattern we define a family of algorithms, and at the runtime we choose the algorithm.Instead of implementing a single algorithm directly, the code receives runtime instructions on which algorithm to use from a family of algorithms. This pattern allows the algorithm to vary independently from the clients that use it.
Key essentials of this pattern are:
1.Strategy Interface: Defines the common interface for all supported algorithms.
2.Concrete Strategies: Implement the Strategy interface with specific algorithms.
3.Context: Uses a Strategy to execute the algorithm.
Example of strategy pattern:
Imagine we are building an encoding system where we may need to use different encoding algorithms depending on the situation. We will demonstrate this system using the Strategy Pattern.
// Strategy Interface interface EncoderStrategy { void encode(String string); } // Concrete Strategy for Base64 Encoding class Base64Encoder implements EncoderStrategy { @Override public void encode(String string) { // Implement Base64 encoding logic here System.out.println("This method uses Base64 encoding algorithm for: " + string); } } // Concrete Strategy for MD5 Encoding class MD5Encoder implements EncoderStrategy { @Override public void encode(String string) { // Implement MD5 encoding logic here System.out.println("This method uses MD5 encoding algorithm for: " + string); } } // Context Class class EncoderContext { private EncoderStrategy strategy; public void setEncoderMethod(EncoderStrategy strategy) { this.strategy = strategy; } public void encode(String string) { strategy.encode(string); } } // Usage public class Main { public static void main(String[] args) { EncoderContext context = new EncoderContext(); // Use Base64 encoding method context.setEncoderMethod(new Base64Encoder()); context.encode("A34937ifdsuhfweiur"); // Use MD5 encoding method context.setEncoderMethod(new MD5Encoder()); context.encode("89743297dfhksdhWOJO"); } }
Explanation:
- Firstly, we define the interface for the
- Next, we create concrete implementations of the interfaces that we have defined.
- Finally, we use these implementations to observe how a change in the subject also updates its dependents.
- Observer pattern: behavioral design pattern that establishes a one-to-many dependency between objects. This means that when one object (the subject) changes its state, all its dependent objects (observers) are notified and updated automatically. This pattern is particularly useful for implementing distributed event-handling systems in event-driven software.
Key essentials of this pattern are:
- Subject: It is an object which holds the state and informs the observers when it updates it's state.
- Observer: An interface or abstract class that defines the update method, which is called when the subject’s state changes.
- Concrete Subject: A class that implements the Subject interface and maintains the state of interest to observers.
- Concrete Observer: A class that implements the Observer interface and updates its state to match the subject’s state.
Example of observer pattern:
In a stock trading application, the stock ticker acts as the subject. Whenever the price of a stock is updated, various observers—such as investors and regulatory bodies—are notified of the change. This allows them to respond to price fluctuations in real-time.
import java.util.ArrayList; import java.util.List; // Observer interface interface Observer { void update(String stockSymbol, double stockPrice); } // Subject interface interface Subject { void register(Observer o); void remove(Observer o); void notify(); } // Concrete Subject class Stock implements Subject { private List<observer> observers; private String stockSymbol; private double stockPrice; public Stock() { observers = new ArrayList(); } public void setStock(String stockSymbol, double stockPrice) { this.stockSymbol = stockSymbol; this.stockPrice = stockPrice; notify(); } @Override public void register(Observer o) { observers.add(o); } @Override public void remove(Observer o) { observers.remove(o); } @Override public void notify() { for (Observer observer : observers) { observer.update(stockSymbol, stockPrice); } } } // Concrete Observer class StockTrader implements Observer { private String traderName; public StockTrader(String traderName) { this.traderName = traderName; } @Override public void update(String stockSymbol, double stockPrice) { System.out.println("Trader " + traderName + " notified. Stock: " + stockSymbol + " is now $" + stockPrice); } } // Usage public class Main { public static void main(String[] args) { Stock stock = new Stock(); StockTrader trader1 = new StockTrader("Niharika"); StockTrader trader2 = new StockTrader("Goulikar"); stock.register(trader1); stock.register(trader2); stock.setStock("Niha", 9500.00); stock.setStock("Rika", 2800.00); } } </observer>
Explanation:
- Firstly, we define the interface for the subject which is responsible for sending updates. Similarly, we also define an interface for the observer, which is responsible for receiving updates.
- Next, we create concrete implementations of the interfaces that we have defined.
- Finally, we use these implementations to observe how a change in the subject also updates its dependents.
以上がデザインパターン : 一般的なデザインパターンの詳細の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

この記事では、2025年の上位4つのJavaScriptフレームワーク(React、Angular、Vue、Svelte)を分析し、パフォーマンス、スケーラビリティ、将来の見通しを比較します。 強力なコミュニティと生態系のためにすべてが支配的なままですが、彼らの相対的なポップ

この記事では、リモートコードの実行を可能にする重大な欠陥であるSnakeyamlのCVE-2022-1471の脆弱性について説明します。 Snakeyaml 1.33以降のSpring Bootアプリケーションをアップグレードする方法は、このリスクを軽減する方法を詳述し、その依存関係のアップデートを強調しています

この記事では、カフェインとグアバキャッシュを使用してJavaでマルチレベルキャッシュを実装してアプリケーションのパフォーマンスを向上させています。セットアップ、統合、パフォーマンスの利点をカバーし、構成と立ち退きポリシー管理Best Pra

Javaのクラスロードには、ブートストラップ、拡張機能、およびアプリケーションクラスローダーを備えた階層システムを使用して、クラスの読み込み、リンク、および初期化が含まれます。親の委任モデルは、コアクラスが最初にロードされ、カスタムクラスのLOAに影響を与えることを保証します

node.js 20は、V8エンジンの改善、特により速いガベージコレクションとI/Oを介してパフォーマンスを大幅に向上させます。 新機能には、より良いWebセンブリのサポートと洗練されたデバッグツール、開発者の生産性とアプリケーション速度の向上が含まれます。

大規模な分析データセットのオープンテーブル形式であるIcebergは、データの湖のパフォーマンスとスケーラビリティを向上させます。 内部メタデータ管理を通じて、寄木細工/ORCの制限に対処し、効率的なスキーマの進化、タイムトラベル、同時wを可能にします

この記事では、Lambda式、Streams API、メソッド参照、およびオプションを使用して、機能プログラミングをJavaに統合することを調べます。 それは、簡潔さと不変性を通じてコードの読みやすさと保守性の改善などの利点を強調しています

この記事では、キャッシュや怠zyなロードなどの高度な機能を備えたオブジェクトリレーショナルマッピングにJPAを使用することについて説明します。潜在的な落とし穴を強調しながら、パフォーマンスを最適化するためのセットアップ、エンティティマッピング、およびベストプラクティスをカバーしています。[159文字]


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

Dreamweaver Mac版
ビジュアル Web 開発ツール

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

メモ帳++7.3.1
使いやすく無料のコードエディター
