検索
ホームページバックエンド開発Python チュートリアルPython で FaceNet を使用して顔認識システムを構築する方法

How to Build a Face Recognition System Using FaceNet in Python

顔認識テクノロジーは、セキュリティ システムからソーシャル メディアに至るまで、さまざまなアプリケーションでますます普及してきています。このタスクに最も効果的なモデルの 1 つは、顔の検証、認識、クラスタリングのために設計された深層学習モデルである FaceNet です。

このチュートリアルでは、FaceNet を使用して Python で顔認識システムを構築する方法を説明します。モデルのロードから顔の比較まですべてをカバーします。このガイドを終えるまでに、独自のプロジェクトに顔認識を実装するための強固な基盤が得られるでしょう。

フェイスネットとは何ですか?

FaceNet は、Google が開発した深層学習モデルで、顔を 128 次元のユークリッド空間にマッピングします。これらの埋め込みは顔の重要な特徴を表すため、顔を比較し、高精度で認識することが容易になります。従来の顔認識方法とは異なり、FaceNet は埋め込み学習に焦点を当てているため、非常に効果的で拡張性が高くなります。

前提条件

コードに入る前に、以下がインストールされていることを確認してください:

  • Python 3.x
  • TensorFlow または Keras (深層学習モデル用)
  • NumPy (数値演算用)
  • OpenCV (画像処理用)
  • Scikit-learn (最近傍検索を適用するため)

pip を使用してこれらの依存関係をインストールできます:

pip install tensorflow numpy opencv-python scikit-learn

ステップ 1: 事前トレーニングされた FaceNet モデルをロードする

まず、事前トレーニングされた FaceNet モデルをロードします。信頼できるソースからモデルをダウンロードすることも、keras-facenet ライブラリから入手可能なモデルを使用することもできます。

from keras.models import load_model

# Load the pre-trained FaceNet model
model = load_model('facenet_keras.h5')
print("Model Loaded Successfully")

モデルのロードは、顔認識システムをセットアップする最初のステップです。このモデルは、顔の数値表現である画像の埋め込みを生成するために使用されます。

ステップ 2: FaceNet 用に画像を前処理する

FaceNet は、入力画像が RGB 形式の 160x160 ピクセルであることを想定しています。さらに、ピクセル値はモデルに入力される前に正規化する必要があります。

import cv2
import numpy as np

def preprocess_image(image_path):
    # Load the image using OpenCV
    img = cv2.imread(image_path)

    # Convert the image to RGB (FaceNet expects RGB images)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    # Resize the image to 160x160 pixels
    img = cv2.resize(img, (160, 160))

    # Normalize the pixel values
    img = img.astype('float32') / 255.0

    # Expand dimensions to match the input shape of FaceNet (1, 160, 160, 3)
    img = np.expand_dims(img, axis=0)

    return img

この関数は、FaceNet に必要な画像の前処理を処理します。画像を適切な形式とサイズに変換し、モデルが効果的に作業できる入力を確実に受け取るようにします。

ステップ 3: 顔の埋め込みを生成する

次に、FaceNet モデルを使用して、前処理された画像から埋め込みを生成します。これらの埋め込みは、顔の一意の数値表現として機能します。

def get_face_embedding(model, image_path):
    # Preprocess the image
    img = preprocess_image(image_path)

    # Generate the embedding
    embedding = model.predict(img)

    return embedding

get_face_embedding 関数は、モデルと画像パスを受け取り、画像を処理して、埋め込みを返します。この埋め込みは、顔の比較に使用するものです。

ステップ 4: 埋め込みを使用して顔を比較する

2 つの顔が一致するかどうかを判断するには、それらの間のユークリッド距離を計算して、それらの埋め込みを比較します。距離が特定のしきい値を下回る場合、顔は一致するとみなされます。

from numpy import linalg as LA

def compare_faces(embedding1, embedding2, threshold=0.5):
    # Compute the Euclidean distance between the embeddings
    distance = LA.norm(embedding1 - embedding2)

    # Compare the distance to the threshold
    if distance 



<p>compare_faces 関数は、2 つの埋め込み間の距離を計算します。この距離が指定されたしきい値 (デフォルトでは 0.5) より小さい場合、関数は「顔が一致しました」と出力します。それ以外の場合は、「顔が異なります。」と表示されます。</p>

<h2>
  
  
  ステップ 5: 顔認識システムのテスト
</h2>

<p>最後に、2 つの画像を使用して顔認識システムをテストして、それらが同じ人物として正しく識別されるかどうかを確認してみましょう。<br>
</p>

<pre class="brush:php;toolbar:false"># Load the FaceNet model
model = load_model('facenet_keras.h5')

# Get embeddings for two images
embedding1 = get_face_embedding(model, 'face1.jpg')
embedding2 = get_face_embedding(model, 'face2.jpg')

# Compare the two faces
distance = compare_faces(embedding1, embedding2)

print(f"Euclidean Distance: {distance}")

出力

  • 顔が一致すると、「顔が一致しました」と表示されます。
  • 一致しない場合は、「顔が異なります」と表示されます。

さらに、2 つの埋め込み間のユークリッド距離が出力されます。

結論

Python で FaceNet を使用して、シンプルかつ強力な顔認識システムを構築しました。このシステムは、より多くの顔を含めたり、リアルタイム認識を処理したり、より大規模なプロジェクトに統合したりするために簡単に拡張できます。 FaceNet は精度と効率が高いため、顔認識タスクに最適です。

自由にしきい値を試してみたり、ウェブカメラ ベースの顔認識ツールなどのリアルタイム アプリケーションでこのシステムを使用してみたりしてください。

ご質問がある場合、またはさらにサポートが必要な場合は、以下にコメントを残してください。コーディングを楽しんでください!


以上がPython で FaceNet を使用して顔認識システムを構築する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Python vs. C:重要な違​​いを理解しますPython vs. C:重要な違​​いを理解しますApr 21, 2025 am 12:18 AM

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

Python vs. C:プロジェクトのためにどの言語を選択しますか?Python vs. C:プロジェクトのためにどの言語を選択しますか?Apr 21, 2025 am 12:17 AM

PythonまたはCの選択は、プロジェクトの要件に依存します。1)迅速な開発、データ処理、およびプロトタイプ設計が必要な場合は、Pythonを選択します。 2)高性能、低レイテンシ、および緊密なハードウェアコントロールが必要な場合は、Cを選択します。

Pythonの目標に到達する:毎日2時間のパワーPythonの目標に到達する:毎日2時間のパワーApr 20, 2025 am 12:21 AM

毎日2時間のPython学習を投資することで、プログラミングスキルを効果的に改善できます。 1.新しい知識を学ぶ:ドキュメントを読むか、チュートリアルを見る。 2。練習:コードと完全な演習を書きます。 3。レビュー:学んだコンテンツを統合します。 4。プロジェクトの実践:実際のプロジェクトで学んだことを適用します。このような構造化された学習計画は、Pythonを体系的にマスターし、キャリア目標を達成するのに役立ちます。

2時間の最大化:効果的なPython学習戦略2時間の最大化:効果的なPython学習戦略Apr 20, 2025 am 12:20 AM

2時間以内にPythonを効率的に学習する方法は次のとおりです。1。基本的な知識を確認し、Pythonのインストールと基本的な構文に精通していることを確認します。 2。変数、リスト、関数など、Pythonのコア概念を理解します。 3.例を使用して、基本的および高度な使用をマスターします。 4.一般的なエラーとデバッグテクニックを学習します。 5.リストの概念を使用したり、PEP8スタイルガイドに従ったりするなど、パフォーマンスの最適化とベストプラクティスを適用します。

PythonとCのどちらかを選択:あなたに適した言語PythonとCのどちらかを選択:あなたに適した言語Apr 20, 2025 am 12:20 AM

Pythonは初心者やデータサイエンスに適しており、Cはシステムプログラミングとゲーム開発に適しています。 1. Pythonはシンプルで使いやすく、データサイエンスやWeb開発に適しています。 2.Cは、ゲーム開発とシステムプログラミングに適した、高性能と制御を提供します。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

Python vs. C:プログラミング言語の比較分析Python vs. C:プログラミング言語の比較分析Apr 20, 2025 am 12:14 AM

Pythonはデータサイエンスと迅速な発展により適していますが、Cは高性能およびシステムプログラミングにより適しています。 1. Python構文は簡潔で学習しやすく、データ処理と科学的コンピューティングに適しています。 2.Cには複雑な構文がありますが、優れたパフォーマンスがあり、ゲーム開発とシステムプログラミングでよく使用されます。

1日2時間:Python学習の可能性1日2時間:Python学習の可能性Apr 20, 2025 am 12:14 AM

Pythonを学ぶために1日2時間投資することは可能です。 1.新しい知識を学ぶ:リストや辞書など、1時間で新しい概念を学びます。 2。練習と練習:1時間を使用して、小さなプログラムを書くなどのプログラミング演習を実行します。合理的な計画と忍耐力を通じて、Pythonのコアコンセプトを短時間で習得できます。

Python vs. C:曲線と使いやすさの学習Python vs. C:曲線と使いやすさの学習Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)