ホームページ >バックエンド開発 >Python チュートリアル >CSV - Python でローカル ファイルとリモート ファイルを処理する
プログラマーの皆さん、こんにちは!
この記事では、ローカルおよびリモートの CSV ファイルを処理し、情報をロードして出力し、後で列を Django タイプにマッピングできるオープンソース ツールを紹介します。通常、CSV ファイルの処理が必要になるのは、データセットが大きくなり、カスタム レポートが Excel でサポートされなくなったり、データ テーブルを介した完全なデータ操作が行われたり、API が必要になったりする場合です。
現在の機能リストをさらに拡張して、CSV ファイルをデータベース テーブル/モデルにマッピングし、ダッシュボード Web アプリを完全に生成することができます。
ソース コード: AppSeed サービスの CSV プロセッサー部分 (オープンソース)
コードと使用法の説明を始める前に、ツールの機能を要約しましょう:
README で説明されているように、プロジェクト ソースを複製して使用できるようにした後、CSV パーサーを CLI 経由で実行できます。インストールが完了したら、次のワンライナーを使用して CVS プロセッサを呼び出すことができます。
$ python manage.py tool_inspect_source -f media/tool_inspect/csv_inspect.json
このツールは次のタスクを実行します:
同じことがローカル ファイルとリモート ファイルに適用できます。たとえば、次のワンライナーを実行することで、悪名高い Titanic.cvs を分析できます。
$ python manage.py tool_inspect_source -f media/tool_inspect/csv_inspect_distant.json # Output > Processing .\media\tool_inspect\csv_inspect_distant.json |-- file: https://raw.githubusercontent.com/datasciencedojo/datasets/master/titanic.csv |-- type: csv Field CSV Type Django Types ----------- ---------- ------------------------------------------ PassengerId int64 models.IntegerField(blank=True, null=True) Survived int64 models.IntegerField(blank=True, null=True) Pclass int64 models.IntegerField(blank=True, null=True) Name object models.TextField(blank=True, null=True) Sex object models.TextField(blank=True, null=True) Age float64 models.FloatField(blank=True, null=True) SibSp int64 models.IntegerField(blank=True, null=True) Parch int64 models.IntegerField(blank=True, null=True) Ticket object models.TextField(blank=True, null=True) Fare float64 models.FloatField(blank=True, null=True) Cabin object models.TextField(blank=True, null=True) Embarked object models.TextField(blank=True, null=True) [1] - PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked [2] - 1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S [3] - 2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C [4] - 3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S [5] - 4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S [6] - 5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S [7] - 6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q [8] - 7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S [9] - 8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S [10] - 9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S ... (truncated output)
ツールの関連部分は次のとおりです:
情報を読み込み、ソースがローカルかリモートかを事前にチェックします
print( '> Processing ' + ARG_JSON ) print( ' |-- file: ' + JSON_DATA['source'] ) print( ' |-- type: ' + JSON_DATA['type' ] ) print( '\n') tmp_file_path = None if 'http' in JSON_DATA['source']: url = JSON_DATA['source'] r = requests.get(url) tmp_file = h_random_ascii( 8 ) + '.csv' tmp_file_path = os.path.join( DIR_TMP, tmp_file ) if not file_write(tmp_file_path, r.text ): return JSON_DATA['source'] = tmp_file_path else: if not file_exists( JSON_DATA['source'] ): print( ' > Err loading SOURCE: ' + JSON_DATA['source'] ) return csv_types = parse_csv( JSON_DATA['source'] )
ヘッダーを分析し、検出された型を Django の型にマッピングします。
表形式ビューの場合、Tabulate Library が使用されます。
csv_types = parse_csv( JSON_DATA['source'] ) #pprint.pp ( csv_types ) table_headers = ['Field', 'CSV Type', 'Django Types'] table_rows = [] for t in csv_types: t_type = csv_types[t]['type'] t_type_django = django_fields[ t_type ] table_rows.append( [t, t_type, t_type_django] ) print(tabulate(table_rows, table_headers))
最後のステップは、CSV データを印刷する:
csv_data = load_csv_data( JSON_DATA['source'] ) idx = 0 for l in csv_data: idx += 1 print( '['+str(idx)+'] - ' + str(l) ) # Truncate output .. if idx == 10: print( ' ... (truncated output) ' ) break
この時点で、コードは CSV 情報、データ型、および Django の対応するデータ型へのアクセスを提供します。マッピングは、Flask、Express、NextJS などのフレームワークに簡単に拡張できます。
Django の型マッピングは次のとおりです:
# Pandas Type django_fields = { 'int' : 'models.IntegerField(blank=True, null=True)', 'integer' : 'models.IntegerField(blank=True, null=True)', 'string' : "models.TextField(blank=True, null=True)", 'string_unique' : "models.TextField(blank=True, null=False, unique=True)", 'object' : "models.TextField(blank=True, null=True)", 'object_unique' : "models.TextField(blank=True, null=False, unique=True)", 'int64' : 'models.IntegerField(blank=True, null=True)', 'float64' : 'models.FloatField(blank=True, null=True)', 'bool' : 'models.BooleanField(null=True)', }
このツールは現在開発中です。次の手順は次のとおりです:
読んでいただきありがとうございます!
貢献に興味がある方は、お気軽に新しい AppSeed プラットフォームに参加し、Discord のコミュニティとつながりましょう:
以上がCSV - Python でローカル ファイルとリモート ファイルを処理するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。