ホームページ  >  記事  >  バックエンド開発  >  Go と Python 間の gRPC 通信

Go と Python 間の gRPC 通信

WBOY
WBOYオリジナル
2024-08-22 19:02:33707ブラウズ

gRPC Communication Between Go and Python

gRPC は、強力で高性能なリモート プロシージャ コール (RPC) フレームワークであり、REST ほど一般的には使用されていませんが、特定のシナリオでは大きな利点を提供します。

さらに、言語に依存せず、あらゆる環境で実行できるため、サーバー間通信に理想的な選択肢となります。

詳しくは説明しませんが、gRPC の一般的なリンクは次のとおりです。実践的なチュートリアルを提供します

gRPC クライアントに移行する 

私たちの Go はクライアントですが、フロントエンド アプリ React、Svelte などのサーバーであることをイメージしてみましょう。

func getFirstArg() (string, error) {
    if len(os.Args) < 2 {
        return "", fmt.Errorf("expected 1 argument, but got none")
    }
    return os.Args[1], nil
}

func main() {
    filePath, err := getFirstArg()
    if err != nil {
        log.Fatalf("Failed to get file path from arguments: %v", err)
    }

    fileData, err := ioutil.ReadFile(filePath)
    if err != nil {
        log.Fatalf("Failed to read file: %v", err)
    }

 ...
}

gRPC Communication Between Go and Python


例として、React フロントエンドはファイルをアップロードし、Go でそれを処理しますが、Excel からの回答が必要なので、GPT API を使用します。 Go でも実行できますが、一方で Python には、langchan_openai、Excel 用のパンダなど、私たちの生活を楽にするパッケージがたくさんあります。


できれば virtualenv .venv に gRPC をインストールすることから始めましょう

$ go install google.golang.org/protobuf/cmd/protoc-gen-go@latest
$ go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@latest
$ export PATH="$PATH:$(go env GOPATH)/bin"

次に、OS にプロトコル バッファをインストールする必要があります。
プロトコル バッファ ファイルを保存する proto ディレクトリを作成しましょう。それに excel.proto という名前を付けて、これを貼り付けます:

syntax = "proto3";
option go_package = "client-gRPC/proto";
service ExcelService {
    rpc UploadFile(FileRequest) returns (FileResponse);
}
message FileRequest {
    string file_name = 1;
    bytes file_content = 2;
}
message FileResponse {
    bytes file_content = 1;
}

この gRPC サービスである ExcelService を使用すると、クライアントは名前と内容を送信してファイルをアップロードできます。サーバーは同じファイル内容で応答します。 

Go の場合、Python で go_package を渡すことが不可欠です。この行は必要ありません。

vscode-proto3 は、VSCode を使用する場合にダウンロードするのに適した拡張機能です。

これらすべてが完了したら、proto ファイルを生成できます。prot dir と同じレベルに置くことをお勧めします。そのためには、次のコマンドを実行します。

プロトコル --go_out=。 --go_opt=paths=source_relative --go-grpc_out=。 --go-grpc_opt=paths=source_relative proto/excel.proto

成功すると 2 つのファイルが生成されますが、多くの調整がある場合はオプションで Makefile を追加し、proto + upper コマンドとして定義します。

import (
    ....

    "google.golang.org/grpc"
    pb "client-gRPC/proto"
    "github.com/xuri/excelize/v2"
)

func main() {
    ....

    conn, err := grpc.Dial("localhost:50051", grpc.WithInsecure())
    if err != nil {
        log.Fatalf("Failed to connect to gRPC server: %v", err)
    }
    defer conn.Close()

    client := pb.NewExcelServiceClient(conn)

    req := &pb.FileRequest{
        FileName:    filePath,
        FileContent: fileData,
    }

    res, err := client.UploadFile(context.Background(), req)
    if err != nil {
        log.Fatalf("Failed to upload file: %v", err)
    }

    outputFile := "output.xlsx"
    err = saveBytesAsExcel(outputFile, res.FileContent)
    if err != nil {
        log.Fatalf("Failed to save bytes as Excel file: %v", err)
    }

    fmt.Printf("Excel file saved as: %s\n", outputFile)
}

func saveBytesAsExcel(filePath string, fileContent []byte) error {
    f, err := excelize.OpenReader(bytes.NewReader(fileContent))
    if err != nil {
        return fmt.Errorf("failed to open Excel file: %v", err)
    }

    if err := f.SaveAs(filePath); err != nil {
        return fmt.Errorf("failed to save Excel file: %v", err)
    }
    return nil
}

Python サーバーとなる 50051 をリッスンするための接続を作成します。&pb.FileRequest は proto コマンドを使用して事前に生成されており、今メソッドをインポートしています。走れば受信できますか? Python サーバーがまだ確立されていないため。

Failed to upload file: rpc error: code = Unavailable desc = connection error: desc = "transport: Error while dialing: dial tcp 127.0.0.1:50051: connect: connection refused"

Python gRPC サーバー

Python はサーバーとして機能するため、アプローチは少し異なりますが、本質的にはパッケージフィールドとは別に同じプロトファイルは必要ありません。 GPT が Excel に質問をどのように入力するかを一目でわかるように、gRPC を使用せずにベースの main.py を作成することから始めましょう。

import os
import openai
import pandas as pd
from dotenv import load_dotenv

def get_answer_from_gpt(apikey: str, question: str):
    openai.api_key = apikey
    response = openai.ChatCompletion.create(
        model="gpt-4",
        messages=[
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": question}
        ]
    )
    return response['choices'][0]['message']['content'].strip()

def answer_questions_df(df: pd.DataFrame, apikey: str):
    answers = []

    for question in df.iloc[:, 0]: 
        answer = get_answer_from_gpt(apikey, question)
        answers.append(answer)
    return answers

if __name__ == "__main__":
    load_dotenv()

    openai_api_key = os.getenv("OPENAI_API_KEY", "OpenAI API key hasn't been set.")

    df = pd.read_excel('Book1.xlsx')

    df['Answer'] = answer_questions_df(df, openai_api_key

Go が送信する質問に答えるシンプルなスクリプトですが、専用の openai ライブラリにより LOC が少なくなり、簡単になります。


まず、上記と同じファイルで proto dir を追加します。オプション セクションは、説明したように削除できます。できれば virtualenv に gRPC をインストールし、ここで私が実行したプロト生成のインストールに従ってください。

python3 -m grpc_tools.protoc --proto_path=proto --python_out=proto --grpc_python_out=proto proto/excel.proto

私の proto ディレクトリと同じレベルにするには、忘れずに __init.py を追加してください!

ファイルが生成されたら、次に進みましょう。

import io
import grpc
from proto import excel_pb2_grpc as excel_grpc
from proto import excel_pb2

class ExcelService(excel_grpc.ExcelServiceServicer):
    def UploadFile(self, request, context):
        try:
            # Convert bytes to a file-like object
            file_like_object = io.BytesIO(request.file_content)

            # Load the workbook from the file-like object
            workbook = openpyxl.load_workbook(file_like_object)

            # Access the first sheet (or use appropriate logic to get the sheet you need)
            sheet = workbook.active

            # Convert the sheet to a DataFrame
            data = sheet.values
            columns = next(data)  # Get the header row
            df = pd.DataFrame(data, columns=columns)

            print("Loaded DataFrame:")
            print(df.head())

            # Ensure that the DataFrame is not empty and has questions
            if df.empty or df.shape[1] < 1:
                print("DataFrame is empty or does not have the expected columns.")
                return excel_pb2.FileResponse(file_content=b'')

            # Get answers and add them to the DataFrame
            answers = answer_questions_df(df, openai_api_key)
            df['Answer'] = answers

            # Write the updated DataFrame back to a BytesIO object
            output = io.BytesIO()
            with pd.ExcelWriter(output, engine='openpyxl') as writer:
                df.to_excel(writer, index=False, sheet_name='Sheet1')

            # Reset the buffer's position to the beginning
            output.seek(0)

            # Return the modified file content
            response = excel_pb2.FileResponse(file_content=output.read())
            return response
        except Exception as e:
            print(f"Error processing file: {e}")
            return excel_pb2.FileResponse(file_content=b'')

def serve():
    server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
    excel_grpc.add_ExcelServiceServicer_to_server(ExcelService(), server)
    server.add_insecure_port('[::]:50051')
    server.start()
    print("Server running on port 50051.")
    server.wait_for_termination()

if __name__ == "__main__":
    load_dotenv()

    openai_api_key = os.getenv("OPENAI_API_KEY", "OpenAI API key hasn't been set.")

    serve()

サーバーを定義し、proto ファイルによって生成されたメソッドを含む ExcelService クラスを追加します。ファイルをバイト単位で受信するため、io バイト リーダーを使用してファイルのさらなる処理を開始し、2 番目の列に入力する必要があります。

response = excel_pb2.FileResponse(file_content=output.read())

最後に、Go クライアントが受け取るために ☝️ を返します。

Python で proto ファイルを見つけられるようにするには、エクスポート パスを定義する必要があります

エクスポート PYTHONPATH=$PYTHONPATH:mnt/c/own_dev/gRPC/server/proto

クライアントとサーバーの実行

If all is good you can run

#First comes server

python3 -m main

#Then client

go run client.go Book1.xlsx

そして、Go クライアント側で更新された .xlsx ファイルを取得する必要があります。

結論

この記事では、Python サーバーと Go クライアント間の gRPC 通信の設定の基礎について説明しました。 gRPC を活用することで、Go アプリケーションから Python サーバーに Excel ファイルを送信し、OpenAI の GPT API を使用してファイルを処理し、変更されたファイルを Go クライアントに返すシームレスな方法を確立しました。

以上がGo と Python 間の gRPC 通信の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明:
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。