検索
ホームページバックエンド開発Python チュートリアルオープンソース モデル (llama) を使用して独自のカスタム LLM エージェントを作成する

Create your own Custom LLM Agent Using Open Source Models (llama)

この記事では、PC 上でローカルに実行されるオープンソース llm (llama3.1) を使用するカスタム エージェントを作成する方法を学習します。 Ollama と LangChain も使用します。

概要

  • Ollama をインストールします
  • プルモデル
  • サービスモデル
  • 新しいフォルダーを作成し、コードエディターで開きます
  • 仮想環境の作成とアクティブ化
  • langchain langchain-ollam をインストールします
  • Python のオープンソース モデルを使用してカスタム エージェントを構築する
  • 結論

オラマをインストールする

GitHub README にある OS の種類に基づいた手順に従って、Ollama をインストールします。

https://github.com/ollama/ollama

私は Linux ベースの PC を使用しているので、ターミナルで次のコマンドを実行します。

curl -fsSL https://ollama.com/install.sh | sh

プルモデル

次のコマンドを使用して、利用可能な LLM モデルを取得します。

ollama pull llama3.1

これにより、モデルのデフォルトのタグ付きバージョンがダウンロードされます。通常、デフォルトは最新の最小サイズのパラメーター モデルを指します。この場合、llama3.1:8b モデルになります。

モデルの別のバージョンをダウンロードするには、https://ollama.com/library/llama3.1 にアクセスして、インストールするバージョンを選択し、モデルとそのバージョン番号を指定して ollama pull コマンドを実行します。 。例: ollam プル llama3.1:70b

Mac では、モデルは ~/.ollama/models にダウンロードされます

Linux (または WSL) では、モデルは /usr/share/ollama/.ollama/models に保存されます

サーブモデル

次のコマンドを実行して、デスクトップ アプリケーションを実行せずに ollam を起動します。

ollama serve

すべてのモデルは localhost:11434 で自動的に提供されます

新しいフォルダーを作成し、コードエディターで開きます

コンピューター上に新しいフォルダーを作成し、VS Code などのコード エディターで開きます。

仮想環境の作成とアクティブ化

ターミナルを開きます。次のコマンドを使用して、仮想環境 .venv を作成し、アクティブ化します。

python3 -m venv .venv
source .venv/bin/activate

ラングチェーンをインストールする

次のコマンドを実行して、langchain と langchain-ollama をインストールします。

pip install -U langchain langchain-ollama

上記のコマンドは、Python で LangChain および LangChain-Ollama パッケージをインストールまたはアップグレードします。 -U フラグは、これらのパッケージの最新バージョンが確実にインストールされ、すでに存在する可能性のある古いバージョンを置き換えます。

Python のオープンソース モデルを使用してカスタム エージェントを構築する

Python ファイル (例: main.py) を作成し、次のコードを追加します:

from langchain_ollama import ChatOllama
from langchain.agents import tool
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.agents.format_scratchpad.openai_tools import (
    format_to_openai_tool_messages,
)
from langchain.agents import AgentExecutor
from langchain.agents.output_parsers.openai_tools import OpenAIToolsAgentOutputParser


llm = ChatOllama(
            model="llama3.1",
            temperature=0,
            verbose=True
        )

@tool
def get_word_length(word: str) -> int:
    """Returns the length of a word."""
    return len(word)


tools = [get_word_length]



prompt = ChatPromptTemplate.from_messages(
            [
                (
                    "system",
                    "You are very powerful assistant",
                ),
                ("user", "{input}"),
                MessagesPlaceholder(variable_name="agent_scratchpad"),
            ]
        )

llm_with_tools = llm.bind_tools(tools)

agent = (
    {
        "input": lambda x: x["input"],
        "agent_scratchpad": lambda x: format_to_openai_tool_messages(
            x["intermediate_steps"]
        ),
    }
    | prompt
    | llm_with_tools
    | OpenAIToolsAgentOutputParser()
)

# Create an agent executor by passing in the agent and tools
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
result = agent_executor.invoke({"input": "How many letters in the word educa"})

if result:
    print(f"[Output] --> {result['output']}")
else:
    print('There are no result..')

上記のコード スニペットは、ChatOllama モデル (llama3.1) を使用して LangChain エージェントをセットアップし、ユーザー入力を処理し、単語の長さを計算するカスタム ツールを利用します。これは、エージェントのプロンプト テンプレートを定義し、ツールを言語モデルにバインドし、入力を処理して中間ステップをフォーマットするエージェントを構築します。最後に、特定の入力でエージェントを呼び出す AgentExecutor を作成します。 「educa という単語は何文字か」という簡単な質問を渡し、出力を印刷するか、結果が見つからなかったかどうかを示します。

実行すると、次の結果が得られます:

> Entering new AgentExecutor chain...

Invoking: `get_word_length` with `{'word': 'educa'}`


5The word "educa" has 5 letters.

> Finished chain.
[Output] --> The word "educa" has 5 letters.

エージェントがモデル (llama3.1) を使用してツールを正しく呼び出し、単語内の文字数を取得したことがわかります。

結論

読んでいただきありがとうございます。

ここで Ollama リポジトリを確認してください: https://github.com/ollama/ollama

以上がオープンソース モデル (llama) を使用して独自のカスタム LLM エージェントを作成するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
2時間のPython計画:現実的なアプローチ2時間のPython計画:現実的なアプローチApr 11, 2025 am 12:04 AM

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Python:主要なアプリケーションの調査Python:主要なアプリケーションの調査Apr 10, 2025 am 09:41 AM

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間でどのくらいのPythonを学ぶことができますか?2時間でどのくらいのPythonを学ぶことができますか?Apr 09, 2025 pm 04:33 PM

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は?プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は?Apr 02, 2025 am 07:18 AM

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか?中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか?Apr 02, 2025 am 07:15 AM

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

Python 3.6にピクルスファイルをロードするときに「__Builtin__」モジュールが見つからない場合はどうすればよいですか?Python 3.6にピクルスファイルをロードするときに「__Builtin__」モジュールが見つからない場合はどうすればよいですか?Apr 02, 2025 am 07:12 AM

Python 3.6のピクルスファイルのロードレポートエラー:modulenotFounderror:nomodulenamed ...

風光明媚なスポットコメント分析におけるJieba Wordセグメンテーションの精度を改善する方法は?風光明媚なスポットコメント分析におけるJieba Wordセグメンテーションの精度を改善する方法は?Apr 02, 2025 am 07:09 AM

風光明媚なスポットコメント分析におけるJieba Wordセグメンテーションの問題を解決する方法は?風光明媚なスポットコメントと分析を行っているとき、私たちはしばしばJieba Wordセグメンテーションツールを使用してテキストを処理します...

正規表現を使用して、最初の閉じたタグと停止に一致する方法は?正規表現を使用して、最初の閉じたタグと停止に一致する方法は?Apr 02, 2025 am 07:06 AM

正規表現を使用して、最初の閉じたタグと停止に一致する方法は? HTMLまたは他のマークアップ言語を扱う場合、しばしば正規表現が必要です...

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター