大規模な CSV ファイルを効率的に処理することは、データ分析から ETL (抽出、変換、読み込み) プロセスに至るまで、多くのアプリケーションで共通の要件です。この記事では、MacBook Pro M1 で大きな CSV ファイルを処理する際の、Golang、NodeJS with NestJS、PHP、Python の 4 つの一般的なプログラミング言語のパフォーマンスをベンチマークしたいと思います。どの言語がこのタスクに最適なパフォーマンスを提供するかを判断することを目的としています。
ハードウェア: MacBook Pro M1、256GB SSD、8GB RAM
ソフトウェア:
約 100 万行が含まれる sales_data.csv という名前の合成 CSV ファイルを使用しました。各行には、transaction_id、product_id、数量、価格、タイムスタンプなどのトランザクションの詳細が含まれています。
各言語について、スクリプトは次のタスクを実行します:
各言語で使用されるスクリプトは次のとおりです:
セールス.ゴー
package main import ( "encoding/csv" "fmt" "os" "strconv" "time" ) func main() { start := time.Now() file, err := os.Open("../generate-csv/sales_data.csv") if err != nil { fmt.Println("Error:", err) return } defer file.Close() reader := csv.NewReader(file) _, _ = reader.Read() // Skip header totalSales := 0.0 productSales := make(map[string]float64) for { line, err := reader.Read() if err != nil { break } productID := line[1] quantity, _ := strconv.Atoi(line[2]) price, _ := strconv.ParseFloat(line[3], 64) total := float64(quantity) * price totalSales += total productSales[productID] += total } var topProduct string var topSales float64 for product, sales := range productSales { if sales > topSales { topProduct = product topSales = sales } } elapsed := time.Since(start) fmt.Printf("Golang Execution time: %s\n", elapsed) fmt.Printf("Total Sales: $%.2f\n", totalSales) fmt.Printf("Top Product: %s with sales $%.2f\n", topProduct, topSales) }
csv.service.ts
import { Injectable } from '@nestjs/common'; import * as fs from 'fs'; import * as fastcsv from 'fast-csv'; // path file CSV const GLOBAL_CSV_PATH = '../generate-csv/sales_data.csv'; @Injectable() @Injectable() export class CsvService { async parseCsv(): Promise<{ nestExecutionTime: number; totalSales: number; topProductSales: number; }> { return new Promise((resolve, reject) => { const startTime = process.hrtime(); let totalSales = 0; const productSales: { [key: string]: number } = {}; fs.createReadStream(GLOBAL_CSV_PATH) .pipe(fastcsv.parse({ headers: true, delimiter: ',' })) .on('data', (row) => { const productID = row.product_id; const quantity = parseInt(row.quantity, 10); const price = parseFloat(row.price); const total = quantity * price; totalSales += total; if (!productSales[productID]) { productSales[productID] = 0; } productSales[productID] += total; }) .on('end', () => { const topProduct = Object.keys(productSales).reduce((a, b) => productSales[a] > productSales[b] ? a : b, ); const topProductSales = productSales[topProduct] || 0; const endTime = process.hrtime(startTime); const nestExecutionTime = endTime[0] + endTime[1] / 1e9; console.log(`NestJS Execution time: ${nestExecutionTime} seconds`); console.log(`Total Sales: $${totalSales}`); console.log( `Top Product: ${topProduct} with sales $${topProductSales}`, ); resolve({ nestExecutionTime, totalSales, topProductSales, }); }) .on('error', (error) => reject(error)); }); } }
csv.controller.ts
import { Controller, Get } from '@nestjs/common'; import { CsvService } from './csv.service'; @Controller('csv') export class CsvController { constructor(private readonly csvService: CsvService) {} @Get('parse') async parseCsv(): Promise<{ nestExecutionTime: number; totalSales: number; topProductSales: number; }> { return this.csvService.parseCsv(); } }
sales.php
<?php $start_time = microtime(true); $file = fopen("../generate-csv/sales_data.csv", "r"); $total_sales = 0; $product_sales = []; fgetcsv($file); // Skip header while (($line = fgetcsv($file)) !== false) { $product_id = $line[1]; $quantity = (int)$line[2]; $price = (float)$line[3]; $total = $quantity * $price; $total_sales += $total; if (!isset($product_sales[$product_id])) { $product_sales[$product_id] = 0; } $product_sales[$product_id] += $total; } fclose($file); arsort($product_sales); $top_product = array_key_first($product_sales); $end_time = microtime(true); $execution_time = ($end_time - $start_time); echo "PHP Execution time: ".$execution_time." seconds\n"; echo "Total Sales: $".$total_sales."\n"; echo "Top Product: ".$top_product." with sales $".$product_sales[$top_product]."\n";
import csv import time # Input file name config input_file = '../generate-csv/sales_data.csv' def parse_csv(file_path): start_time = time.time() total_sales = 0 product_sales = {} with open(file_path, mode='r') as file: reader = csv.DictReader(file) for row in reader: product_id = row['product_id'] quantity = int(row['quantity']) price = float(row['price']) total = quantity * price total_sales += total if product_id not in product_sales: product_sales[product_id] = 0 product_sales[product_id] += total top_product = max(product_sales, key=product_sales.get) execution_time = time.time() - start_time return { 'total_sales': total_sales, 'top_product': top_product, 'top_product_sales': product_sales[top_product], 'execution_time': execution_time, } if __name__ == "__main__": result = parse_csv(input_file) print(f"Python Execution time: {result['execution_time']:.2f} seconds") print(f"Total Sales: ${result['total_sales']:.2f}") print(f"Top Product: {result['top_product']} with sales ${ result['top_product_sales']:.2f}")
ベンチマーク テストの結果は次のとおりです:
私のベンチマークにより、いくつかの興味深い洞察が明らかになりました。
実行時間: 実行時間の点では Golang が最も優れており、僅差で PHP8 がそれに続きますが、タスクの完了には NestJS が最も長い時間を要しました。
メモリ使用量: Build NestJS は効率的なメモリ使用量を示しましたが、Python はより高いメモリ消費量を示しました。
実装の容易さ: Golang は最も簡単な実装を提供しましたが、NestJS はより多くのコード行と複雑さを必要としました。
私の調査結果によれば、Golang は最高のパフォーマンス速度とメモリ効率を提供し、大規模なデータセットを処理するのに最適な選択肢となっています。
完全なコードは My Github リポジトリで入手できます
csv-parsing-battle.
以上がCSV ファイル処理のベンチマーク: Golang vs NestJS vs PHP vs Pythonの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。