ホームページ >バックエンド開発 >Golang >Go で独自の SMTP サーバーを構築する

Go で独自の SMTP サーバーを構築する

PHPz
PHPzオリジナル
2024-07-28 02:01:031147ブラウズ

Build Your Own SMTP Server in Go

Valyent では、開発者向けのオープンソース ソフトウェアを構築しています。

この使命の一環として、私たちは現在、開発者向けのメール送信サービスである Ferdinand を開発中です (現在アルファ版)。

電子メール インフラストラクチャはいくつかの主要なプロトコルに依存しており、最も重要なものは次のとおりです。

  1. SMTP (Simple Mail Transfer Protocol): メール サーバー間の電子メールの送受信に使用されます。
  2. IMAP (インターネット メッセージ アクセス プロトコル): ユーザーがサーバーから直接電子メールを読んで管理できるようにします。
  3. POP3 (ポスト オフィス プロトコル バージョン 3): 電子メールをサーバーからローカル デバイスにダウンロードし、通常はサーバーから削除します。

今日の記事では、Ferdinand と行ったアプローチを反映して、独自の アウトバウンド SMTP サーバー の構築に焦点を当てます。そうすることで、電子メール送信インフラストラクチャの最も重要なコンポーネントについて深く理解できるようになります。

「自分に作れないものは、分かりません。」

— リチャード・ファインマン

アウトバウンド SMTP サーバーを最初から構築することで、ほとんどの開発者が決して達成できないレベルの電子メール配信に関する洞察を得ることができます。

次に進むために、Go プログラミング言語と、Simon Ser の素晴らしいメール ライブラリを使用します。プロセスをわかりやすく説明し、他のサーバーに電子メールを送信する方法を示し、さらに到達性を可能にする SPF、DKIM、DMARC などの重要な概念についても説明します。

本番環境に対応した SMTP サーバーがない場合でも、最後までに電子メール インフラストラクチャについて少なくともより深く理解できるようになります。

SMTP について: 基本

コードに入る前に、SMTP とは何か、そしてそれがどのように機能するかを確認しましょう。 SMTP (Simple Mail Transfer Protocol) は、インターネット経由で電子メールを送信するための標準プロトコルです。これは、クライアント/サーバー モデルで動作する比較的単純なテキストベースのプロトコルです。

SMTPコマンド

SMTP プロトコルはコマンドを使用します。 SMTP の各コマンドは、電子メール送信プロセスにおいて特定の目的を果たします。これにより、サーバーは自己紹介、送信者と受信者の指定、実際の電子メールのコンテンツの転送、通信セッション全体の管理が可能になります。これらのコマンドは、2 つの電子メール サーバー間の構造化された会話と考えてください。各コマンドは、会話内の特定のステートメントまたは質問を表します。

SMTP サーバーを構築するときは、基本的に、この言語を流暢に話し、受信したコマンドを解釈して適切に応答し、電子メールを送信するときに適切なコマンドを発行できるプログラムを作成することになります。

最も重要な SMTP コマンドを調べて、この会話がどのように展開されるかを見てみましょう:

  • HELO/EHLO (Hello): このコマンドは SMTP 会話を開始します。 EHLO は SMTP の拡張バージョンであり、追加機能をサポートしています。構文は HELO ドメインまたは EHLO ドメインです。例: EHLO example.com.
  • MAIL FROM: このコマンドは、送信者の電子メール アドレスを指定し、新しいメール トランザクションを開始します。構文 MAIL FROM: を使用します。例は、MAIL FROM: です。
  • RCPT TO: 受信者の電子メール アドレスを指定するために使用されます。このコマンドは複数の受信者に対して複数回使用できます。構文は RCPT TO: です。例: RCPT TO:.
  • DATA: このコマンドはメッセージ内容の始まりを示します。ピリオド (.) を 1 つだけ含む行で終了します。 DATA コマンドの後に、メッセージの内容を入力します。例えば:
DATA
From: john@example.com
To: jane@example.com
Subject: Hello

This is the body of the email.
.
  • QUIT: この単純なコマンドは SMTP セッションを終了します。その構文は単に QUIT です。
  • RSE​​T (リセット): RSET コマンドは現在のメール トランザクションを中止しますが、接続は開いたままにします。新しい接続を開始せずに最初からやり直す場合に便利です。構文は単純に RSET です。
  • AUTH (認証): このコマンドはサーバーに対してクライアントを認証するために使用され、さまざまな認証メカニズムをサポートします。構文は AUTH メカニズムです。例: AUTH LOGIN.

典型的な SMTP 会話は次のようになります:

C: EHLO client.example.com
S: 250-smtp.example.com Hello client.example.com
S: 250-SIZE 14680064
S: 250-AUTH LOGIN PLAIN
S: 250 HELP

C: MAIL FROM:<sender@example.com>
S: 250 OK

C: RCPT TO:<recipient@example.com>
S: 250 OK

C: DATA
S: 354 Start mail input; end with <CRLF>.<CRLF>

C: From: sender@example.com
C: To: recipient@example.com
C: Subject: Test Email
C:
C: This is a test email.
C: .

S: 250 OK: queued as 12345

C: QUIT
S: 221 Bye

SMTPでの認証

認証は、特に送信電子メール サーバーにとって、SMTP の重要な側面です。サーバーの不正使用を防止し、スパムを減らすのに役立ちます。 SMTP ではいくつかの認証方法が使用されます:

  1. PLAIN: This is a simple authentication method where the username and password are sent in clear text. It should only be used over encrypted connections.
  2. LOGIN: Similar to PLAIN, but the username and password are sent in separate commands.
  3. CRAM-MD5: This method uses a challenge-response mechanism to avoid sending the password in clear text.
  4. OAUTH2: This method allows the use of OAuth 2.0 tokens for authentication.

Here's an example of how PLAIN authentication looks in an SMTP conversation:

C: EHLO example.com
S: 250-STARTTLS
S: 250 AUTH PLAIN LOGIN
C: AUTH PLAIN AGVtYWlsQGV4YW1wbGUuY29tAHBhc3N3b3Jk
S: 235 2.7.0 Authentication successful

In this example, AGVtYWlsQGV4YW1wbGUuY29tAHBhc3N3b3Jk is the base64-encoded version of \0email@example.com\0password.

When implementing authentication in your SMTP server, you'll need to:

  1. Advertise supported authentication methods in response to the EHLO command.
  2. Implement handlers for the AUTH command that can process the chosen authentication method.
  3. Verify the provided credentials against your user database.
  4. Maintain the authenticated state for the duration of the SMTP session.

Now, let's move on to implementing these concepts in our Go SMTP server.

Achieving deliverability: DKIM, SPF, DMARC

Imagine sending a letter through the postal service without a return address or an official stamp. It might reach its destination, but there's a good chance it'll end up in the "suspicious mail" pile. In the digital world of email, we face a similar challenge.

How do we ensure our emails aren't just sent, but actually delivered and trusted?

Enter the holy trinity of email authentication: DKIM, SPF, and DMARC.

DKIM: Your Email's Digital Signature

DKIM (DomainKeys Identified Mail) is like a wax seal on a medieval letter. It proves the email hasn't been tampered with during transit.

How it works:

  • Your email server adds a digital signature to every outgoing email.
  • The receiving server checks this signature against a public key published in your DNS records.
  • If the signature is valid, the email passes the DKIM check.

Think of it as your email's passport, stamped and verified at each checkpoint.

Example DKIM DNS Record:

<selector>._domainkey.<domain>.<tld>. IN TXT "v=DKIM1; k=rsa; p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC3QEKyU1fSma0axspqYK5iAj+54lsAg4qRRCnpKK68hawSd8zpsDz77ntGCR0X2mHVvkHbX6dX...oIDAQAB"

Here, 'selector' is a unique identifier for this DKIM key, and the long string is your public key.

SPF: The Guest List for Your Domain's Party

SPF (Sender Policy Framework) is like the bouncer at an exclusive club. It specifies which email servers are allowed to send emails on behalf of your domain.

How it works:

  • You publish a list of authorized IP addresses in your DNS records.
  • When an email arrives claiming to be from your domain, the receiving server checks if it came from an IP on your list.
  • If it matches, the email passes the SPF check.

It's like saying, "If the email didn't come from one of these guys, it's not with us!"

Example SPF DNS Record:

<domain>.<tld>. IN TXT "v=spf1 ip4:192.0.2.0/24 include:_spf.google.com ~all"

This record says:

  • Emails can come from IP addresses in the range 192.0.2.0 to 192.0.2.255.
  • Emails can also come from servers specified in Google's SPF record.
  • The ~all means to soft-fail emails from other sources (treat as suspicious but don't reject).

DMARC: The Rule Maker and Enforcer

DMARC (Domain-based Message Authentication, Reporting & Conformance) is the wise judge that decides what happens to emails that fail DKIM or SPF checks.

How it works:

  • You set a policy in your DNS records specifying how to handle emails that fail authentication.
  • Options range from "let it through anyway" to "reject it outright."
  • DMARC also provides reports on email authentication results, helping you monitor and improve your email security.

Think of DMARC as your email bouncer's rulebook and incident report.

Example DMARC DNS Record:

_dmarc.<domain>.<tld>. IN TXT "v=DMARC1; p=quarantine; rua=mailto:dmarc-reports@<domain>.<tld>"

This record says:

  • If an email fails DKIM and SPF checks, quarantine it (typically send to spam folder).
  • Send aggregate reports about email authentication results to dmarc-reports@example.com.

Why This Trinity Matters

Together, DKIM, SPF, and DMARC form a powerful shield against email spoofing and phishing. They tell receiving servers, "This email is really from us, sent by someone we trust, and here's what to do if something seems fishy."

Implementing this trinity not only improves your email deliverability but also protects your domain's reputation. It's like having a state-of-the-art security system for your email infrastructure.

As we build our SMTP server, keeping these authentication methods in mind will be crucial for ensuring our emails don't just get sent, but actually reach their destination and are trusted when they arrive. Remember, when implementing these records on a production domain, start with permissive policies and gradually tighten them as you confirm everything is working correctly.

Building the SMTP Server with Go

1. Project Initialization

First, let's create a new directory for our project and initialize a Go module:

mkdir go-smtp-server
cd go-smtp-server
go mod init github.com/yourusername/go-smtp-server

2. Installing Dependencies

We'll need a few dependencies for our SMTP server. Run the following commands:

go get github.com/emersion/go-smtp
go get github.com/emersion/go-sasl
go get github.com/emersion/go-msgauth

3. Basic SMTP Server Setup

  1. Create a new file named main.go and add the following code:
package main

import (
    "log"
    "time"
    "io"

    "github.com/emersion/go-smtp"
)

func main() {
    s := smtp.NewServer(&Backend{})

    s.Addr = ":2525"
    s.Domain = "localhost"
    s.WriteTimeout = 10 * time.Second
    s.ReadTimeout = 10 * time.Second
    s.MaxMessageBytes = 1024 * 1024
    s.MaxRecipients = 50
    s.AllowInsecureAuth = true

    log.Println("Starting server at", s.Addr)
    if err := s.ListenAndServe(); err != nil {
        log.Fatal(err)
    }
}

// Backend implements SMTP server methods.
type Backend struct{}

func (bkd *Backend) NewSession(_ *smtp.Conn) (smtp.Session, error) {
    return &Session{}, nil
}

// A Session is returned after EHLO.
type Session struct{}

// We'll implement the Session methods next

This creates an SMTP server, listening on the 2525 port, a convenient choice for development purposes, since this port doesn’t require administrative privileges, unlike the standard ports 25 (standard SMTP), 465 (TLS), 587 (STARTTLS).

  1. Implementing EHLO/HELO

The EHLO/HELO command is handled automatically by the go-smtp library. We don't need to implement it ourselves.

  1. Implementing MAIL FROM

Add this method to the Session struct:

func (s *Session) Mail(from string, opts *smtp.MailOptions) error {
    fmt.Println("Mail from:", from) s.From = from
    return nil
}

This method is called when the server receives a MAIL FROM command. It logs the sender's address and stores it in the session.

  1. Implementing RCPT TO

Add this method to the Session struct:

func (s *Session) Rcpt(to string) error {
    fmt.Println("Rcpt to:", to)
    s.To = append(s.To, to)
    return nil
}

This method is called for each RCPT TO command. It logs the recipient's address and adds it to the list of recipients for this session.

  1. Implementing DATA

Add this method to the Session struct:

import (
    "fmt"
    "io"
)

func (s *Session) Data(r io.Reader) error {
    if b, err := io.ReadAll(r); err != nil {
        return err
    } else {
        fmt.Println("Received message:", string(b))

        // Here you would typically process the email
        return nil
    }
}

This method is called when the server receives the DATA command. It reads the entire email message and logs it. In a real server, you would process the email here.

  1. Implementing AUTH

Add this method to the Session struct:

func (s *Session) AuthPlain(username, password string) error {
    if username != "testuser" || password != "testpass" {
        return fmt.Errorf("Invalid username or password")
    }

    return nil
}

This implements a basic authentication mechanism. Note that this is for demonstration purposes only and should not be used in production.

  1. Implementing RSET

Add this method to the Session struct:

func (s *Session) Reset() {
    s.From = "" s.To = []string{}
}

This method is called when the server receives a RSET command. It resets the session state.

  1. Implementing QUIT

Add this method to the Session struct:

func (s *Session) Logout() error {
    return nil
}

This method is called when the server receives a QUIT command. In this simple implementation, we don't need to do anything special.

  1. Sending Emails: MX Lookup, Port Selection, and DKIM Signing

Once we've received and processed an email, the next step is to send it to its destination. This involves two key steps: finding the recipient's mail server using MX (Mail Exchanger) records, and attempting to send the email using standard SMTP ports.

First, let's add a function to look up MX records:

import "net"

func lookupMX(domain string) ([]*net.MX, error) {
    mxRecords, err := net.LookupMX(domain)
    if err != nil {
        return nil, fmt.Errorf("Error looking up MX records: %v", err)
    }

    return mxRecords, nil
}

Next, let's create a function that attempts to send an email using different ports:

import (
    "crypto/tls"
    "net/smtp"
    "strings"
)

func sendMail(from string, to string, data []byte) error {
    domain := strings.Split(to, "@")[1]

    mxRecords, err := lookupMX(domain)
    if err != nil {
        return err
    }

    for _, mx := range mxRecords {
        host := mx.Host

        for _, port := range []int{25, 587, 465} {
            address := fmt.Sprintf("%s:%d", host, port)

            var c *smtp.Client

            var err error

            switch port {
            case 465:
                // SMTPS
                tlsConfig := &tls.Config{ServerName: host}
                conn, err := tls.Dial("tcp", address, tlsConfig)
                if err != nil {
                    continue
                }

                c, err = smtp.NewClient(conn, host)

            case 25, 587:
                // SMTP or SMTP with STARTTLS
                c, err = smtp.Dial(address)
                if err != nil {
                    continue
                }

                if port == 587 {
                    if err = c.StartTLS(&tls.Config{ServerName: host}); err != nil {
                        c.Close()
                        continue
                    }
                }
            }

            if err != nil {
                continue
            }

            // SMTP conversation
            if err = c.Mail(from); err != nil {
                c.Close()
                continue
            }

            if err = c.Rcpt(to); err != nil {
                c.Close()
                continue
            }

            w, err := c.Data()
            if err != nil {
                c.Close()
                continue
            }

            if _, err := w.Write(data); err != nil {
                c.Close()
                continue
            }

            err = w.Close()
            if err != nil {
                c.Close()
                continue
            }

            c.Quit()

            return nil
        }
    }

    return fmt.Errorf("Failed to send email to %s", to)
}

This function does the following:

  • Looks up the MX records for the recipient's domain.
  • For each MX record, it tries to connect using ports 25, 587, and 465 in that order.
  • It uses the appropriate connection method for each port:
    • Port 25: Plain SMTP
    • Port 587: SMTP with STARTTLS
    • Port 465: SMTPS (SMTP over TLS)
  • If a connection is successful, it attempts to send the email using the SMTP protocol.
  • If the email is sent successfully, it returns. Otherwise, it tries the next port or MX record.

Now, let's modify our Data method in the Session struct to use this new sendMail function:

func (s *Session) Data(r io.Reader) error {
    if data, err := io.ReadAll(r); err != nil {
        return err
    } else {
        fmt.Println("Received message:", string(data))
        for _, recipient := range s.To {
            if err := sendMail(s.From, recipient, data); err != nil {
                fmt.Printf("Failed to send email to %s: %v", recipient, err)
            } else {
                fmt.Printf("Email sent successfully to %s", recipient)
            }

        }

        return nil
    }
}

This implementation will attempt to send the received email to each recipient using the appropriate mail server and port.

Now, let's add DKIM signing to our email sending process. First, we need to import the necessary packages and set up our DKIM options:

import (
    // ... other imports ...
    "crypto/rsa"
    "crypto/x509"
    "encoding/pem"
    "github.com/emersion/go-msgauth/dkim"
)

// Load your DKIM private key
var dkimPrivateKey *rsa.PrivateKey

func init() {
    // Load your DKIM private key from a file
    privateKeyPEM, err := ioutil.ReadFile("path/to/your/private_key.pem")
    if err != nil {
        log.Fatalf("Failed to read private key: %v", err)
    }

    block, _ := pem.Decode(privateKeyPEM)
    if block == nil {
        log.Fatalf("Failed to parse PEM block containing the private key")
    }

    privateKey, err := x509.ParsePKCS1PrivateKey(block.Bytes)
    if err != nil {
        log.Fatalf("Failed to parse private key: %v", err)
    }

    dkimPrivateKey = privateKey
}

// DKIM options
var dkimOptions = &dkim.SignOptions{
    Domain: "example.com",
    Selector: "default",
    Signer: dkimPrivateKey,
}

Next, let's modify our sendMail function to include DKIM signing:

func sendMail(from string, to string, data []byte) error {
    // ... [previous MX lookup code] ...

    for _, mx := range mxRecords {
        host := mx.Host
        for _, port := range []int{25, 587, 465} {
            // ... [previous connection code] ...

            // DKIM sign the message
            var b bytes.Buffer
            if err := dkim.Sign(&b, bytes.NewReader(data), dkimOptions); err != nil {
                return fmt.Errorf("Failed to sign email with DKIM: %v", err)
            }
            signedData := b.Bytes()

            // SMTP conversation
            if err = c.Mail(from); err != nil {
                c.Close()
                continue
            }
            if err = c.Rcpt(to); err != nil {
                c.Close()
                continue
            }
            w, err := c.Data()
            if err != nil {
                c.Close()
                continue
            }
            _, err = w.Write(signedData) // Use the DKIM signed message
            if err != nil {
                c.Close()
                continue
            }
            err = w.Close()
            if err != nil {
                c.Close()
                continue
            }
            c.Quit()
            return nil
        }
    }

    return fmt.Errorf("Failed to send email to %s", to)
}

In this updated sendMail function:

  • We sign the email data with DKIM before sending it.
  • We use the signed data (signedData) when writing to the SMTP connection.

This implementation will add a DKIM signature to your outgoing emails, which will help improve deliverability and authenticity of your emails.

忘れずに「path/to/your/private_key.pem」を DKIM 秘密キーへの実際のパスに置き換え、DKIM DNS レコードと一致するように dkimOptions のドメインとセレクターを更新してください。

  1. 考慮事項と次のステップ

この実装では、電子メールの送受信ができる基本的な SMTP サーバーが提供されますが、本番環境に対応したサーバーについては、いくつかの重要な考慮事項があります。

  • レート制限: レート制限を実装して、悪用を防止し、電子メール爆撃から保護します。
  • スパム防止: サーバーがスパムの送信に使用されないように対策を講じます。
  • エラー処理: デバッグと監視を改善するために、エラー処理とログを改善します。
  • キュー管理: メールの送信に失敗した場合の再試行ロジック用のキュー システムを実装します。

結論

この投稿を読んで多くのことを学んでいただければ幸いです。電子メールの送信について詳しく知りたい場合は、Ferdinand の GitHub リポジトリにアクセスして、コードを調べてください。

以上がGo で独自の SMTP サーバーを構築するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明:
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。