コードの品質を向上させることは、ソフトウェア開発において常に重要な問題です。この記事では、データ収集クローラー システムを例として、段階的なリファクタリングを通じて設計原則とベスト プラクティスを適用する方法を具体的に説明します。
まず、すべての機能が 1 つのクラスに統合された非常に単純な Web スクレイパーから始めます。
DeepL.com (無料版) で翻訳
project_root/ ├── web_scraper.py ├── main.py └── requirements.txt
web_scraper.py
import requests import json import sqlite3 class WebScraper: def __init__(self, url): self.url = url def fetch_data(self): response = requests.get(self.url) data = response.text parsed_data = self.parse_data(data) enriched_data = self.enrich_data(parsed_data) self.save_data(enriched_data) return enriched_data def parse_data(self, data): return json.loads(data) def enrich_data(self, data): # Apply business logic here # Example: extract only data containing specific keywords return {k: v for k, v in data.items() if 'important' in v.lower()} def save_data(self, data): conn = sqlite3.connect('test.db') cursor = conn.cursor() cursor.execute('INSERT INTO data (json_data) VALUES (?)', (json.dumps(data),)) conn.commit() conn.close()
main.py
from web_scraper import WebScraper def main(): scraper = WebScraper('https://example.com/api/data') data = scraper.fetch_data() print(data) if __name__ == "__main__": main()
ディレクトリ構造
project_root/ ├── data_fetcher.py ├── data_parser.py ├── data_saver.py ├── data_enricher.py ├── web_scraper.py ├── main.py └── requirements.txt
data_enricher.py
class DataEnricher: def enrich(self, data): return {k: v for k, v in data.items() if 'important' in v.lower()}
web_scraper.py
from data_fetcher import DataFetcher from data_parser import DataParser from data_enricher import DataEnricher from data_saver import DataSaver class WebScraper: def __init__(self, url): self.url = url self.fetcher = DataFetcher() self.parser = DataParser() self.enricher = DataEnricher() self.saver = DataSaver() def fetch_data(self): raw_data = self.fetcher.fetch(self.url) parsed_data = self.parser.parse(raw_data) enriched_data = self.enricher.enrich(parsed_data) self.saver.save(enriched_data) return enriched_data
この変更により、各クラスの責任が明確になり、再利用性とテスト容易性が向上します。ただし、ビジネス ロジックは依然として DataEnricher クラスに埋め込まれています。
ディレクトリ構造
project_root/ ├── interfaces/ │ ├── __init__.py │ ├── data_fetcher_interface.py │ ├── data_parser_interface.py │ ├── data_enricher_interface.py │ └── data_saver_interface.py ├── implementations/ │ ├── __init__.py │ ├── http_data_fetcher.py │ ├── json_data_parser.py │ ├── keyword_data_enricher.py │ └── sqlite_data_saver.py ├── web_scraper.py ├── main.py └── requirements.txt
インターフェース/data_fetcher_interface.py
from abc import ABC, abstractmethod class DataFetcherInterface(ABC): @abstractmethod def fetch(self, url: str) -> str: pass
インターフェース/data_parser_interface.py
from abc import ABC, abstractmethod from typing import Dict, Any class DataParserInterface(ABC): @abstractmethod def parse(self, raw_data: str) -> Dict[str, Any]: pass
インターフェース/data_enricher_interface.py
from abc import ABC, abstractmethod from typing import Dict, Any class DataEnricherInterface(ABC): @abstractmethod def enrich(self, data: Dict[str, Any]) -> Dict[str, Any]: pass
インターフェース/data_saver_interface.py
from abc import ABC, abstractmethod from typing import Dict, Any class DataSaverInterface(ABC): @abstractmethod def save(self, data: Dict[str, Any]) -> None: pass
implementations/keyword_data_enricher.py
import os from interfaces.data_enricher_interface import DataEnricherInterface class KeywordDataEnricher(DataEnricherInterface): def __init__(self): self.keyword = os.getenv('IMPORTANT_KEYWORD', 'important') def enrich(self, data): return {k: v for k, v in data.items() if self.keyword in str(v).lower()}
web_scraper.py
from interfaces.data_fetcher_interface import DataFetcherInterface from interfaces.data_parser_interface import DataParserInterface from interfaces.data_enricher_interface import DataEnricherInterface from interfaces.data_saver_interface import DataSaverInterface class WebScraper: def __init__(self, fetcher: DataFetcherInterface, parser: DataParserInterface, enricher: DataEnricherInterface, saver: DataSaverInterface): self.fetcher = fetcher self.parser = parser self.enricher = enricher self.saver = saver def fetch_data(self, url): raw_data = self.fetcher.fetch(url) parsed_data = self.parser.parse(raw_data) enriched_data = self.enricher.enrich(parsed_data) self.saver.save(enriched_data) return enriched_data
現段階での主な変更点は次のとおりです
これらの変更により、システムの柔軟性と拡張性が大幅に向上しました。ただし、ビジネス ロジックは DataEnricherInterface とその実装に埋め込まれたままになります。次のステップは、このビジネス ロジックをさらに分離し、ドメイン層として明確に定義することです。
前のステップでは、インターフェースの導入によりシステムの柔軟性が向上しました。ただし、ビジネス ロジック (この場合、データの重要性の決定とフィルタリング) は依然としてデータ層の一部として扱われます。ドメイン駆動設計の概念に基づき、このビジネス ロジックをシステムの中心概念として扱い、独立したドメイン層として実装すると、次のようなメリットが得られます
更新されたディレクトリ構造:
project_root/ ├── domain/ │ ├── __init__.py │ ├── scraped_data.py │ └── data_enrichment_service.py ├── data/ │ ├── __init__.py │ ├── interfaces/ │ │ ├── __init__.py │ │ ├── data_fetcher_interface.py │ │ ├── data_parser_interface.py │ │ └── data_saver_interface.py │ ├── implementations/ │ │ ├── __init__.py │ │ ├── http_data_fetcher.py │ │ ├── json_data_parser.py │ │ └── sqlite_data_saver.py ├── application/ │ ├── __init__.py │ └── web_scraper.py ├── main.py └── requirements.txt
この段階で、DataEnricherInterface と KeywordDataEnricher の役割は、ドメイン層の ScrapedData モデルと DataEnrichmentService に移動されます。この変更の詳細は以下に記載されています。
変更前(セクション2)
class DataEnricherInterface(ABC): @abstractmethod def enrich(self, data: Dict[str, Any]) -> Dict[str, Any]: pass
class KeywordDataEnricher(DataEnricherInterface): def __init__(self): self.keyword = os.getenv('IMPORTANT_KEYWORD', 'important') def enrich(self, data): return {k: v for k, v in data.items() if self.keyword in str(v).lower()}
修正後(セクション3)
@dataclass class ScrapedData: content: Dict[str, Any] source_url: str def is_important(self) -> bool: important_keyword = os.getenv('IMPORTANT_KEYWORD', 'important') return any(important_keyword in str(v).lower() for v in self.content.values())
class DataEnrichmentService: def __init__(self): self.important_keyword = os.getenv('IMPORTANT_KEYWORD', 'important') def enrich(self, data: ScrapedData) -> ScrapedData: if data.is_important(): enriched_content = {k: v for k, v in data.content.items() if self.important_keyword in str(v).lower()} return ScrapedData(content=enriched_content, source_url=data.source_url) return data
この変更により以下が改善されます。
ビジネス ロジックがドメイン層に移動され、DataEnricherInterface が不要になりました。
the KeywordDataEnricher functionality has been merged into the DataEnrichmentService, centralizing the business logic in one place.
The is_important method has been added to the ScrapedData model. This makes the domain model itself responsible for determining the importance of data and makes the domain concept clearer.
DataEnrichmentService now handles ScrapedData objects directly, improving type safety.
The WebScraper class will also be updated to reflect this change.
from data.interfaces.data_fetcher_interface import DataFetcherInterface from data.interfaces.data_parser_interface import DataParserInterface from data.interfaces.data_saver_interface import DataSaverInterface from domain.scraped_data import ScrapedData from domain.data_enrichment_service import DataEnrichmentService class WebScraper: def __init__(self, fetcher: DataFetcherInterface, parser: DataParserInterface, saver: DataSaverInterface, enrichment_service: DataEnrichmentService): self.fetcher = fetcher self.parser = parser self.saver = saver self.enrichment_service = enrichment_service def fetch_data(self, url: str) -> ScrapedData: raw_data = self.fetcher.fetch(url) parsed_data = self.parser.parse(raw_data) scraped_data = ScrapedData(content=parsed_data, source_url=url) enriched_data = self.enrichment_service.enrich(scraped_data) self.saver.save(enriched_data) return enriched_data
This change completely shifts the business logic from the data layer to the domain layer, giving the system a clearer structure. The removal of the DataEnricherInterface and the introduction of the DataEnrichmentService are not just interface replacements, but fundamental changes in the way business logic is handled.
This article has demonstrated how to improve code quality and apply design principles specifically through a step-by-step refactoring process for the data collection crawler system. The main areas of improvement are as follows.
These improvements have greatly enhanced the system's modularity, reusability, testability, maintainability, and scalability. In particular, by applying some concepts of domain-driven design, the business logic became clearer and the structure was more flexible to accommodate future changes in requirements. At the same time, by maintaining the interfaces, we ensured the flexibility to easily change and extend the data layer implementation.
It is important to note that this refactoring process is not a one-time event, but part of a continuous improvement process. Depending on the size and complexity of the project, it is important to adopt design principles and DDD concepts at the appropriate level and to make incremental improvements.
Finally, the approach presented in this article can be applied to a wide variety of software projects, not just data collection crawlers. We encourage you to use them as a reference as you work to improve code quality and design.
以上が設計原則に基づくリファクタリング: データ収集クローラー システムの例の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。